Phase change energy storage technology harnesses the unique properties of phase change materials to release or absorb latent heat during phase transitions, enabling energy storage in the form of latent heat. This technology holds promising applications in electric vehicles, renewable energy storage, grid peaking, and smart grids owing to its high energy density, extended lifespan, and high power. It presents a viable solution for energy transition and efficient energy utilization. This paper delves into the advantages, disadvantages, and application scopes of phase change materials within various temperature zones: ultra-low (-190 ℃ to -50 ℃), low (-50 ℃ to 0 ℃), general (0 ℃ to 100 ℃), and high (100 ℃ to 700 ℃) temperatures. This categorization is based on an exploration of the pertinent literature. To enhance phase change material properties, methods including thermal conductivity enhancement, subcooling reduction, phase change temperature regulation, and improvement of cycling stability are discussed in this study. Moreover, it examines the preparation methods of composite phase change materials, introducing microencapsulation, impregnation, sol-gel, and ultrasonic methods, while elucidating the drawbacks of the latter three methods. Finally, it envisions potential future applications of phase change materials, aiming to serve as a reference and guide for further research in the domain of energy storage using phase change energy storage technology.