Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (12): 3605-3615.doi: 10.19799/j.cnki.2095-4239.2023.0547
• Special issue on composite thermal storage • Previous Articles Next Articles
Rui HAN(), Zhirong LIAO, Boxu YU, Chao XU(), Xing JU
Received:
2023-08-18
Revised:
2023-09-07
Online:
2023-12-05
Published:
2023-12-09
Contact:
Chao XU
E-mail:15931389164@163.com;mechxu@ncepu.edu.cn
CLC Number:
Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant[J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615.
Table 1
Comparison of system thermodynamic index and simulated value under typical working conditions"
工况 | 指标 | 实际值 | 模拟值 | 误差/% |
---|---|---|---|---|
100% 额定工况 | 电功率/kW | 600085 | 600322 | 0.04 |
热耗率/(kJ/kWh) | 7989 | 7991.34 | 0.02 | |
热效率/% | 40.96 | 40.95 | -0.02 | |
75% 额定工况 | 电功率/kW | 450112 | 450524 | 0.09 |
热耗率/(kJ/kWh) | 8271 | 8273.88 | 0.03 | |
热效率/% | 39.56 | 39.55 | -0.03 | |
30% 额定工况 | 电功率/kW | 180058 | 180244 | 0.09 |
热耗率/(kJ/kWh) | 9005 | 9007.34 | 0.03 | |
热效率/% | 36.34 | 36.33 | -0.03 |
Table 2
Parameters of molten salt evaporator"
设备名称 | 熔盐侧 | 汽水侧 | ||
---|---|---|---|---|
过热器 | 入口熔盐温度/℃ | 560 | 入口蒸汽温度/℃ | 350.9 |
入口熔盐流量/(kg/s) | 2278 | 入口蒸汽流量/(kg/s) | 502.8 | |
出口熔盐温度/℃ | 405 | 出口蒸汽温度/℃ | 537 | |
出口熔盐流量/(kg/s) | 2278 | 出口蒸汽流量/(kg/s) | 502.9 | |
再热器 | 入口熔盐温度/℃ | 560 | 入口蒸汽温度/℃ | 318 |
入口熔盐流量/(kg/s) | 1121.8 | 入口蒸汽流量/(kg/s) | 424.8 | |
出口熔盐温度/℃ | 396 | 出口蒸汽温度/℃ | 537 | |
出口熔盐流量/(kg/s) | 1121.8 | 出口蒸汽流量/(kg/s) | 424.8 | |
蒸发器 | 入口熔盐温度/℃ | 402 | 入口蒸汽温度/℃ | 349 |
入口熔盐流量/(kg/s) | 3399.8 | 入口蒸汽流量/(kg/s) | 502.8 | |
出口熔盐温度/℃ | 350 | 出口蒸汽温度/℃ | 351 | |
出口熔盐流量/(kg/s) | 3399.8 | 出口蒸汽流量/(kg/s) | 502.8 | |
预热器 | 入口熔盐温度/℃ | 350 | 入口蒸汽温度/℃ | 272 |
入口熔盐流量/(kg/s) | 3399.8 | 入口蒸汽流量/(kg/s) | 502.8 | |
出口熔盐温度/℃ | 290 | 出口蒸汽温度/℃ | 349 | |
出口熔盐流量/(kg/s) | 3399.8 | 出口蒸汽流量/(kg/s) | 502.8 |
Table 4
Summary table of variable and fixed variable values in heat pump parameters"
变量 | 其他变量取值 | |||||
---|---|---|---|---|---|---|
热源入/出口 温度/℃ | 等熵效率 | 机械效率 | 冷源入口 温度/℃ | 压缩机入/出口 温度/℃ | 工质流量/(kg/s) | |
循环工质 | 290/560 | 0.9 | 1.0 | 27 | —/589 | — |
热源入口温度 | —/560 | 0.9 | 1.0 | 27 | 261.5/589 | 6800 |
等熵效率 | 290/560 | — | 1.0 | 27 | 261.5/589 | 6800 |
机械效率 | 290/560 | 0.9 | — | 27 | 261.5/589 | 6800 |
冷源入口温度 | 290/560 | 0.9 | 1.0 | — | 261.5/589 | 6800 |
压缩机入口温度 | 290/560 | 0.9 | 1.0 | 27 | —/589 | 6800 |
工质流量 | 290/560 | 0.9 | 1.0 | 27 | 261.5/589 | — |
1 | 刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513-2522. |
LIU Z Y, ZHANG Q P, DONG C, et al. Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014, 34(16): 2513-2522. | |
2 | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. |
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. | |
3 | 马汀山, 王妍, 吕凯, 等. "双碳"目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148. |
MA T S, WANG Y, LYU K, et al. Research progress on flexibility transformation technology of coupled energy storage for thermal power units under the "dual-carbon" goal[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148. | |
4 | 张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5): 1565-1578. |
ZHANG X R, XU Y J, YANG L J, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578. | |
5 | GEYER M, GIULIANO S. Conversion of existing coal plants into thermal storage plants[M]//Encyclopedia of Energy Storage. Amsterdam: Elsevier, 2022: 122-132. |
6 | BAUER D. Carnot-Batteries[C]//10th German-Japanese Environment and Energy Dialogue Forum, 2019. |
7 | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. |
8 | MCTIGUE J D P. 'Carnot Batteries' for Electricity Storage[R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2019. |
9 | 圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657. |
SHENG L, XUE X J, BO Y J, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. | |
10 | BLANQUICETH J, CARDEMIL J M, HENRÍQUEZ M, et al. Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants[J]. Renewable and Sustainable Energy Reviews, 2023, 175: 113134. |
11 | ZAMENGO M, YOSHIDA K, MORIKAWA J. Numerical evaluation of a Carnot battery system comprising a chemical heat storage/pump and a Brayton cycle[J]. Journal of Energy Storage, 2021, 41: 102955. |
12 | YONG Q Q, TIAN Y P, QIAN X, et al. Retrofitting coal-fired power plants for grid energy storage by coupling with thermal energy storage[J]. Applied Thermal Engineering, 2022, 215: 119048. |
13 | LIU X, JIN K L, XUE X, et al. Performance and economic analysis of steam extraction for energy storage to molten salt with coupled ejector and thermal power units[J]. Journal of Energy Storage, 2023, 72: 108488. |
14 | VINNEMEIER P, WIRSUM M, MALPIECE D, et al. Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities[J]. Applied Energy, 2016, 184: 506-522. |
15 | MAHDI Z, DERSCH J, SCHMITZ P, et al. Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants[C]//AIP Conference Proceedings", "SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems. Freiburg, Germany. AIP Publishing, 2022: 2445. |
16 | WANG B G, MA H, REN S J, et al. Effects of integration mode of the molten salt heat storage system and its hot storage temperature on the flexibility of a subcritical coal-fired power plant[J]. Journal of Energy Storage, 2023, 58: 106410. |
17 | 赫广迅, 宋业琛. 基于火电站转型储能电站的超高温热泵及熔盐储换热系统工程应用设计[J]. 汽轮机技术, 2023, 65(2): 93-96, 146. |
HE G X, SONG Y C. Engineering application design of ultra-high temperature heat pump and molten salt heat storage and exchange system based on the rmal power station transformation to energy storage power station[J]. Turbine Technology, 2023, 65(2): 93-96, 146. | |
18 | 王辉, 李峻, 祝培旺, 等. 应用于火电机组深度调峰的百兆瓦级熔盐储能技术[J]. 储能科学与技术, 2021, 10(5): 1760-1767. |
WANG H, LI J, ZHU P W, et al. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant[J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. | |
19 | 古雯雯. 基于Aspen Plus的太阳能与火电机组集成与性能分析[D]. 北京: 华北电力大学, 2009. |
GU W W. Integration and performance analysis of solar energy and thermal power units based on aspen plus[D].Beijing: North China Electric Power University, 2009. | |
20 | 蔡小刚. 100 MW熔融盐塔式太阳能光热电站设计优化研究[D]. 北京: 华北电力大学, 2019. |
CAI X G. Study on design optimization of 100 MW molten salt tower solar photothermal power station[D].Beijing: North China Electric Power University, 2019. | |
21 | GEYERR M, TRIEB F, GIULIANO S. Repurposing of existing coal-fired power plants into Thermal Storage Plants for renewable power in Chile[J]. Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ): Bonn, Germany, 2020. |
22 | SALOMONE-GONZÁLEZ D, GONZÁLEZ-AYALA J, MEDINA A, et al. Pumped heat energy storage with liquid media: Thermodynamic assessment by a Brayton-like model[J]. Energy Conversion and Management, 2020, 226: 113540. |
23 | 杨鹤, 杜小泽. 布雷顿循环热泵储能的性能分析与多目标优化[J]. 中国电机工程学报, 2022, 42(1): 196-211. |
YANG H, DU X Z. Performance analysis and multi-objective optimization of brayton cycle pumped thermal energy storage[J]. Proceedings of the CSEE, 2022, 42(1): 196-211. |
[1] | Yanjun BO, Xinjie XUE, Huaning WANG, Changying ZHAO. System design and experimental study of Carnot battery based on latent heat/cold stores [J]. Energy Storage Science and Technology, 2023, 12(9): 2823-2832. |
[2] | Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. |
[3] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[4] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[5] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[6] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[7] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[8] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[9] | Zhiwen WANG, Qiang YE. Investigation of the mixing loss and guiding strategy of the electrolyte flow in the tanks of a redox flow battery system [J]. Energy Storage Science and Technology, 2023, 12(4): 1148-1157. |
[10] | Jixiang GE, Mingxi JI, Yulong DING, Yimo LUO, Liming WANG. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application [J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. |
[11] | Yanqin GUO, Zhen ZENG, Hongguang ZHANG, Ziye LING, Zhengguo ZHANG, Xiaoming FANG. Investigation of heat transfer enhancement mechanism and performance of phase change materials using expanded graphite in double helical coils [J]. Energy Storage Science and Technology, 2023, 12(12): 3678-3689. |
[12] | Zhenwei TAN, Mu LI, Chuanchang LI. Research on the heat transfer characteristics of phase change cold storage gels in tube and fin cold storage equipment [J]. Energy Storage Science and Technology, 2023, 12(12): 3740-3748. |
[13] | Chen WANG, Haiting CUI, Chao WANG, Yalei ZHANG, Haosong CHEN. Examination of the cross-seasonal phase-change heat storage performance of different U-shaped buried pipe structures [J]. Energy Storage Science and Technology, 2023, 12(12): 3808-3817. |
[14] | Keke LIU, Yongfeng LIU, Pucheng PEI, Shengzhuo YAO, Lu ZHANG. Design of a novel flow channel structure of PEMFC based on Koch snowflake [J]. Energy Storage Science and Technology, 2023, 12(11): 3361-3368. |
[15] | Zifeng HU, Yaozu XU, Zhenyun DUAN, Xiangdong SHANG, Jingjiu XU. Analysis of the heat storage process of a new heat storage body structure [J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||