Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2985-3002.doi: 10.19799/j.cnki.2095-4239.2023.0303
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Kaifu LUAN1,2,3(), Changkun CAI1,2,3, Manyi XIE1,2,3, Chun ZHANG1,2,3, Kuncan ZHENG4, Shengli AN1,2,3()
Received:
2023-05-04
Revised:
2023-06-23
Online:
2023-09-05
Published:
2023-09-16
Contact:
Shengli AN
E-mail:luankf97@163.com;shengli_an@126.com
CLC Number:
Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002.
Fig. 1
Geometric model of SOFC: (a) 2D model of ethanol SOFC[29]; (b) 2D model of tubular SOFC[30]; (c) Staggered single channel model[31]; (d) 3D model of tubular SOFC cell[32]; (e) 3D model of flat panel SOFC cell[33]; (f) 3D model of SOFC with double-sided cathodes[34]; (g) 3D model of panel SOFC stack[35]; (h) 3D model of tubular SOFC stack[36]"
Fig. 13
Planar-type SOFC[61]: (a) Temperature gradient along the flow direction for co-flow and counter-flow; (b) Von Mises stress along the direction of the co-flow and counter-flow; (c) The first and third principal stresses of the co-flow; (d) The first principal stress of the air inlet and the fuel inlet under free constraints in the counter-flow; (e) The first and third principal stresses of the counter-flow; (f) Counter-flow, first principal stress at the electrolyte-electrode interface under free confinement"
1 | NI D W, CHARLAS B, KWOK K, et al. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports[J]. Journal of Power Sources, 2016, 311: 1-12. |
2 | WU Y H, LIU H K, WANG Y F, et al. Spatially resolved electrochemical performance and temperature distribution of a segmented solid oxide fuel cell under various hydrogen dilution ratios and electrical loadings[J]. Journal of Power Sources, 2022, 536: 231477. |
3 | KHALEEL M A, LIN Z, SINGH P, et al. A finite element analysis modeling tool for solid oxide fuel cell development: Coupled electrochemistry, thermal and flow analysis in MARC®[J]. Journal of Power Sources, 2004, 130(1/2): 136-148. |
4 | PONGRATZ G, SUBOTIĆ V, HOCHENAUER C, et al. Solid oxide fuel cell operation with biomass gasification product gases: Performance-and carbon deposition risk evaluation via a CFD modelling approach[J]. Energy, 2022, 244: 123085. |
5 | SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27643-27674. |
6 | PETRUZZI L, COCCHI S, FINESCHI F. A global thermo-electrochemical model for SOFC systems design and engineering[J]. Journal of Power Sources, 2003, 118(1/2): 96-107. |
7 | KHAN M Z, ILTAF A, AHMAD ISHFAQ H, et al. Flat-tubular solid oxide fuel cells and stacks: A review[J]. Journal of Asian Ceramic Societies, 2021, 9(3): 745-770. |
8 | TIKIZ I, TAYMAZ I, PEHLIVAN H. CFD modelling and experimental validation of cell performance in a 3-D planar SOFC[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15441-15455. |
9 | FANG X R, LIN Z J. Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell[J]. Applied Energy, 2018, 229: 63-68. |
10 | TAKINO K, TACHIKAWA Y, MORI K, et al. Simulation of SOFC performance using a modified exchange current density for pre-reformed methane-based fuels[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6912-6925. |
11 | ZENG H Y, WANG Y Q, SHI Y X, et al. Highly thermal integrated heat pipe-solid oxide fuel cell[J]. Applied Energy, 2018, 216: 613-619. |
12 | PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Simulation of thermal stresses for new designs of microtubular solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14584-14595. |
13 | YANG C, WANG J T, ZHAO J P, et al. CFD modeling and performance comparison of solid oxide fuel cell and electrolysis cell fueled with syngas[J]. International Journal of Energy Research, 2019, 43(7): 2656-2677. |
14 | XENOS D P, HOFMANN P, PANOPOULOS K D, et al. Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™[J]. Energy, 2015, 81: 84-102. |
15 | ILBAS M, ALEMU M A, CIMEN F M. Comparative performance analysis of a direct ammonia-fuelled anode supported flat tubular solid oxide fuel cell: A 3D numerical study[J]. International Journal of Hydrogen Energy, 2022, 47(5): 3416-3428. |
16 | ANDERSSON M, YUAN J L, SUNDÉN B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells[J]. Applied Energy, 2010, 87(5): 1461-1476. |
17 | CELIK S, IBRAHIMOGLU B, MAT M D, et al. Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7895-7902. |
18 | LU X K, BERTEI A, HEENAN T M M, et al. Multi-length scale microstructural design of micro-tubular solid oxide fuel cells for optimised power density and mechanical robustness[J]. Journal of Power Sources, 2019, 434: 226744. |
19 | PEKSEN M. A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11914-11928. |
20 | CHIANG L K, LIU H C, SHIU Y H, et al. Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell[J]. Renewable Energy, 2008, 33(12): 2580-2588. |
21 | MORTADA M, RAMADAN H S, FARAJ J, et al. Impacts of reactant flow nonuniformity on fuel cell performance and scaling-up: Comprehensive review, critical analysis and potential recommendations[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32161-32191. |
22 | AMIRI A, VIJAY P, TADÉ M O, et al. Planar SOFC system modelling and simulation including a 3D stack module[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2919-2930. |
23 | HE Z J, LI H, BIRGERSSON E. Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack[J]. Applied Energy, 2014, 136: 560-575. |
24 | HE Z J, LI H, BIRGERSSON E. Reduced model for the planar solid oxide fuel cell[J]. Computers & Chemical Engineering, 2013, 52: 155-167. |
25 | CHOROOMZADEH M, KHAZAEE I. Significance of aspect ratio parameter on a solid oxide fuel cell with rectangular, trapezoidal, and triangular obstacles in the flow channel[J]. Arabian Journal for Science and Engineering, 2023, 48(7): 8595-8611. |
26 | MA R, GAO F, BREAZ E, et al. Multidimensional reversible solid oxide fuel cell modeling for embedded applications[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 692-701. |
27 | TSERONIS K, BONIS I, KOOKOS I K, et al. Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(1): 530-547. |
28 | HE Z J, BIRGERSSON E, LI H. Reduced non-isothermal model for the planar solid oxide fuel cell and stack[J]. Energy, 2014, 70: 478-492. |
29 | CHEN B, XU H R, TAN P, et al. Thermal modelling of ethanol-fuelled solid oxide fuel cells[J]. Applied Energy, 2019, 237: 476-486. |
30 | HAO C K, ZENG Z Z, ZHAO B G, et al. Local heat generation management for temperature gradient reduction in tubular solid oxide fuel cells[J]. Applied Thermal Engineering, 2022, 211: 118453. |
31 | LEE S, PARK M, KIM H, et al. Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations[J]. Energy, 2017, 120: 293-305. |
32 | GARI A A, AHMED K I, AHMED M H. Performance and thermal stress of tubular functionally graded solid oxide fuel cells[J]. Energy Reports, 2021, 7: 6413-6421. |
33 | GUO M T, LIN Z J. Long-term evolution of mechanical performance of solid oxide fuel cell stack and the underlying mechanism[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24293-24304. |
34 | JIANG C Y, GU Y C, GUAN W B, et al. 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes[J]. International Journal of Hydrogen Energy, 2020, 45(1): 904-915. |
35 | CHEN D F, DING K, CHEN Z Y, et al. Physics field distributions within fuel cell stacks with manifolds penetrating through the plane zone and open outlet features[J]. Energy Conversion and Management, 2018, 178: 190-199. |
36 | CHEN D F, XU Y, HU B, et al. Investigation of proper external air flow path for tubular fuel cell stacks with an anode support feature[J]. Energy Conversion and Management, 2018, 171: 807-814. |
37 | CHEN D F, ZENG Q C, SU S C, et al. Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold[J]. Applied Energy, 2013, 112: 1100-1107. |
38 | KHODABANDEH E, ALI AKBARI O, AKBARI S, et al. The effects of oil/MWCNT nanofluids and geometries on the solid oxide fuel cell cooling systems: A CFD study[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(1): 245-256. |
39 | CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15521-15530. |
40 | CHEN Q Y, WANG Q W, ZHANG J, et al. Effect of bi-layer interconnector design on mass transfer performance in porous anode of solid oxide fuel cells[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1994-2003. |
41 | FAN S L, ZHU P L, LIU Y, et al. Three-dimensional structure research of anode-supported planar solid oxide fuel cells[J]. Journal of Energy Engineering, 2022, 148(3): 4022010.1-12. |
42 | SU S C, ZHANG Q, GAO X, et al. Effects of changes in solid oxide fuel cell electrode thickness on ohmic and concentration polarizations[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16181-16190. |
43 | HESAMI H, BORJI M, REZAPOUR J. Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2423-2435. |
44 | ZHANG Z G, YUE D T, YANG G G, et al. Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs[J]. International Journal of Heat and Mass Transfer, 2015, 84: 942-954. |
45 | LIN B, SHI Y X, NI M, et al. Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3035-3047. |
46 | DUHN J D, JENSEN A D, WEDEL S, et al. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling[J]. Journal of Power Sources, 2016, 336: 261-271. |
47 | ZOU Y T, LI J, ZHANG J Q, et al. Simulation of two types fuel cell stack models to investigate the relationship between air flow distribution and structure[J]. Ionics, 2019, 25(10): 4851-4859. |
48 | SU S C, HE H H, CHEN D F, et al. Flow distribution analyzing for the solid oxide fuel cell short stacks with rectangular and discrete cylindrical rib configurations[J]. International Journal of Hydrogen Energy, 2015, 40(1): 577-592. |
49 | RASHID K, DONG S K, ALI KHAN R, et al. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas[J]. Journal of Power Sources, 2016, 327: 638-652. |
50 | ZHAO C, YANG J J, ZHANG T, et al. Numerical simulation of flow distribution for external manifold design in solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7003-7013. |
51 | DONG J, XU X H, XU B. CFD analysis of a novel modular manifold with multi-stage channels for uniform air distribution in a fuel cell stack[J]. Applied Thermal Engineering, 2017, 124: 286-293. |
52 | APFEL H, RZEPKA M, TU H, et al. Thermal start-up behaviour and thermal management of SOFC's[J]. Journal of Power Sources, 2006, 154(2): 370-378. |
53 | KONG W, ZHANG W X, ZHANG S D, et al. Residual stress analysis of a micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16173-16180. |
54 | BAEK S M, JEONG A, NAM J H, et al. Three-dimensional micro/macroscale simulation of planar, anode-supported, intermediate-temperature solid oxide fuel cells: I. Model development for hydrogen fueled operation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15456-15481. |
55 | LEE S, BAE Y, YOON K J, et al. Key characteristics of a hydrocarbon-fueled solid oxide fuel cell examined by local thermodynamic states[J]. Energy Conversion and Management, 2018, 174: 565-578. |
56 | ZENG M, YUAN J L, ZHANG J, et al. Investigation of thermal radiation effects on solid oxide fuel cell performance by a comprehensive model[J]. Journal of Power Sources, 2012, 206: 185-196. |
57 | LIN B, SHI Y X, CAI N S. Numerical simulation of cell-to-cell performance variation within a syngas-fuelled planar solid oxide fuel cell stack[J]. Applied Thermal Engineering, 2017, 114: 653-662. |
58 | KIM D H, BAE Y, LEE S, et al. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical simulation[J]. Energy Conversion and Management, 2020, doi: 10.1016/j.enconman.2020.113213. |
59 | ZHENG K Q, KUANG Y, RAO Z H, et al. Numerical study on the effect of bi-polar plate geometry in the SOFC heating-up process[J]. Journal of Renewable and Sustainable Energy, 2019, 11(1): 014301. |
60 | AL-MASRI A, PEKSEN M, BLUM L, et al. A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions[J]. Applied Energy, 2014, 135: 539-547. |
61 | XU M, LI T S, YANG M, et al. Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14927-14940. |
62 | PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Modeling of thermal stresses in a microtubular solid oxide fuel cell stack[J]. Journal of Power Sources, 2015, 300: 10-23. |
63 | PROMSEN M, KOMATSU Y, SCIAZKO A, et al. Feasibility study on saturated water cooled solid oxide fuel cell stack[J]. Applied Energy, 2020, 279: 115803. |
64 | SUGIHARA S, IWAI H. Experimental investigation of temperature distribution of planar solid oxide fuel cell: Effects of gas flow, power generation, and direct internal reforming[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25227-25239. |
65 | SERINCAN M F, PASAOGULLARI U, SINGH P. Controlling reformation rate for a more uniform temperature distribution in an internal methane steam reforming solid oxide fuel cell[J]. Journal of Power Sources, 2020, 468: 228310. |
66 | WANG Y Q, BANERJEE A, WEHRLE L, et al. Performance analysis of a reversible solid oxide cell system based on multi-scale hierarchical solid oxide cell modelling[J]. Energy Conversion and Management, 2019, 196: 484-496. |
67 | BABAIE RIZVANDI O, MIAO X Y, FRANDSEN H L. Multiscale modeling of degradation of full solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27709-27730. |
68 | LI J Y, LIN Z J. Effects of electrode composition on the electrochemical performance and mechanical property of micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12925-12940. |
69 | KASHMIRI S A, TAHIR M W, AFZAL U. Combustion modeling and simulation of recycled anode-off-gas from solid oxide fuel cell[J]. Energies, 2020, 13(19): 5186. |
70 | SCHLUCKNER C, SUBOTIĆ V, PREIßL S, et al. Numerical analysis of flow configurations and electrical contact positions in SOFC single cells and their impact on local effects[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1877-1895. |
[1] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[2] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[3] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[4] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[5] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[6] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[7] | Zifeng HU, Yaozu XU, Zhenyun DUAN, Xiangdong SHANG, Jingjiu XU. Analysis of the heat storage process of a new heat storage body structure [J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. |
[8] | Sujin GE, Long ZHANG, Xiaohua YANG, Wenhao SHAN, Guangqiang XU. Simulation study on the influence of air supply method on the cooling effect of energy storage battery cluster [J]. Energy Storage Science and Technology, 2023, 12(1): 150-154. |
[9] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[10] | Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects [J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878. |
[11] | Fanqi MIN, Taolin LV, Shiyi FU, Liheng ZHANG, Guoju DANG, Liqin YAN, Jingying XIE, Yunzhi GAO. Thermal characteristics and model of lithium-ion capacitor [J]. Energy Storage Science and Technology, 2022, 11(8): 2629-2636. |
[12] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[13] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[14] | Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel [J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065. |
[15] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||