Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 3003-3018.doi: 10.19799/j.cnki.2095-4239.2023.0562
Previous Articles Next Articles
Guanjun CEN1(), Ronghan QIAO1, Xiaoyu SHEN1, Jing ZHU1, Junfeng HAO1, Qiangfu SUN1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yida WU2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Xuejie HUANG1,2()
Received:
2023-08-21
Online:
2023-09-05
Published:
2023-09-16
Contact:
Xuejie HUANG
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023)[J]. Energy Storage Science and Technology, 2023, 12(9): 3003-3018.
1 | LI J X, XU H Y, LI J E, et al. Construction of inorganic-rich cathode electrolyte interphase on co-free cathodes[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26627-26636. |
2 | RUESS R, GOMBOSO D, ULHERR M A, et al. Single-crystalline LiNiO2 as high-capacity cathode active material for solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023: doi: 10.1149/1945-7111/acbc4f. |
3 | SUN C, ZHAO B, CUI R D, et al. In situ-constructed multifunctional interface for high-voltage 4.6 V LiCoO2[J]. ACS Applied Materials & Interfaces, 2023, 15(18): 21982-21993. |
4 | STÜBLE P, MÜLLER M, BERGFELDT T, et al. Cycling stability of lithium-ion batteries based on Fe-Ti-doped LiNi0.5Mn1.5O4 cathodes, graphite anodes, and the cathode-additive Li3PO4[J]. Advanced Science, 2023: doi: 10.1002/advs.202301874:e2301874-e2301874. |
5 | GHAUR A, PESCHEL C, DIENWIEBEL I, et al. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(26): doi: 10.1002/aenm.202203503. |
6 | WU B L, CHEN C G, DANILOV D L, et al. Dual additives for stabilizing Li deposition and SEI formation in anode-free Li-metal batteries[J]. Energy & Environmental Materials, 2023: doi: 10.1002/eem2.12642. |
7 | AN K, JOO M J, TRAN Y H T, et al. Ultrafast charging of a 4.8 V manganese-rich cathode-based lithium metal cell by constructing robust solid electrolyte interphases[J]. Advanced Functional Materials, 2023, 33(29): doi: 10.1002/adfm.202301755. |
8 | SUN J R, ZHANG S, LI J D, et al. Robust transport: An artificial solid electrolyte interphase design for anode-free lithium-metal batteries[J]. Advanced Materials, 2023, 35(20): doi: 10.1002/adma.202209404. |
9 | HUANG Z J, LAI J C, LIAO S L, et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nature Energy, 2023, 8(6): 577-585. |
10 | KWON H, CHOI H J, JANG J K, et al. Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries[J]. Nature Communications, 2023, 14: 4047. |
11 | LIU Q, JIANG W, XU J Y, et al. A fluorinated cation introduces new interphasial chemistries to enable high-voltage lithium metal batteries[J]. Nature Communications, 2023, 14: 3678. |
12 | FENG Y Y, LI Y, LIN J, et al. Production of high-energy 6 Ah-level Li |u2009|LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy[J]. Nature Communications, 2023, 14: 3639. |
13 | KIM H M, SUBRAMANIAN Y, RYU K S. I-rich thioantimonate argyrodite glass-ceramic electrolyte with high air stability and compatibility with lithium[J]. ACS Applied Energy Materials, 2023, 6(11): 6072-6079. |
14 | ARNOLD W, SHREYAS V, AKTER S, et al. Highly conductive iodine and fluorine dual-doped argyrodite solid electrolyte for lithium metal batteries[J]. The Journal of Physical Chemistry C, 2023, 127(25): 11801-11809. |
15 | LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53. |
16 | JIANG Z, LIU Y, PENG H L, et al. Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries[J]. Energy Storage Materials, 2023, 56: 300-309. |
17 | SANO H, MORINO Y, MATSUMURA Y, et al. Surface degeneration of Li3PS4-LiIglass-ceramic electrolyte by exposure to humidity-controlled air and its recovery by thermal treatment[J]. Electrochemistry, 2023, 91(5): 057004. |
18 | KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nature Communications, 2023, 14: 2459. |
19 | HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 3807. |
20 | ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nature Communications, 2023, 14: 3780. |
21 | SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. |
22 | KANG B H, LI S F, YANG J L, et al. Uniform lithium plating for dendrite-free lithium metal batteries: Role of dipolar channels in poly (vinylidene fluoride) and PbZrxTi1- xO3 interface[J]. ACS Nano, 2023, 17(14): 14114-14122. |
23 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. |
24 | WANG X X, SONG L N, ZHENG L J, et al. Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries[J]. Angewandte Chemie, 2023: doi: 10.1002/anie. 202308837:e202308837-e202308837. |
25 | LIU Z Z, YU Q A, OLI N, et al. A non-volatile, thermo-reversible, and self-protective gel electrolyte providing highly precise and reversible thermal protection for lithium batteries[J]. Advanced Energy Materials, 2023, 13(22): doi: 10.1002/aenm.202300143. |
26 | ZHANG C X, LU Z, SONG M A, et al. Highly oxidation-resistant ether gel electrolytes for 4.7 V high-safety lithium metal batteries[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202203870. |
27 | ZHANG Q, LIU Z W, SONG X S, et al. Ordered and fast ion transport of quasi-solid-state electrolyte with regulated coordination strength for lithium metal batteries[J]. Angewandte Chemie International Edition, 2023, 62(30): doi: 10.1002/anie.202302559. |
28 | ZHOU J Q, MENG Y A, SHEN D N, et al. Empowering quasi-solid electrolyte with smart thermoresistance and damage repairability to realize safer lithium metal batteries[J]. The Journal of Physical Chemistry Letters, 2023, 14(19): 4482-4489. |
29 | LI K, WANG J F, SONG Y Y, et al. Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries[J]. Nature Communications, 2023, 14: 2789. |
30 | ZHANG G, LI J, WANG Q, et al. A nonflammable electrolyte for high-voltage lithium metal batteries[J]. ACS Energy Letters, 2023, doi: 10.1021/acsenergylett.3c00706. |
31 | LU Y, ZHANG W L, LIU S Z, et al. Tuning the Li+ solvation structure by a "bulky coordinating" strategy enables nonflammable electrolyte for ultrahigh voltage lithium metal batteries[J]. ACS Nano, 2023, 17(10): 9586-9599. |
32 | ZHANG J B, ZHANG H K, WENG S T, et al. Multifunctional solvent molecule design enables high-voltage Li-ion batteries[J]. Nature Communications, 2023, 14: 2211. |
33 | LEE J N, JEON A R, LEE H J, et al. Molecularly engineered linear organic carbonates as practically viable nonflammable electrolytes for safe Li-ion batteries[J]. Energy & Environmental Science, 2023, 16(7): 2924-2933. |
34 | LIU J X, DONG T, YUAN X D, et al. Exceptional Li-rich Mn-based cathodes enabled by robust interphase and modulated solvation microstructures via anion synergistic strategy[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300680. |
35 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614(7949): 694-700. |
36 | MAO M L, JI X, WANG Q Y, et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries[J]. Nature Communications, 2023, 14: 1082. |
37 | LAI J W, HUANG Y T, ZENG X Y, et al. Molecular design of asymmetric cyclophosphamide as electrolyte additive for high-voltage lithium-ion batteries[J]. ACS Energy Letters, 2023, 8(5): 2241-2251. |
38 | PFEIFFER F, DIDDENS D, WEILING M, et al. Quadrupled cycle life of high-voltage nickel-rich cathodes: Understanding the effective thiophene-boronic acid-based CEI via operando SHINERS[J]. Advanced Energy Materials, 2023, 13(25): doi: 10.1002/aenm.202300827. |
39 | VU D T T, IM J, KIM J H, et al. Lithium plating-free 1 Ah-level high-voltage lithium-ion pouch battery via ambi-functional pentaerythritol disulfate[J]. Journal of Energy Chemistry, 2023, 83: 229-238. |
40 | ZHU J, ZHANG M Y, GAI Y Y, et al. Quickly form stable cathode/electrolyte interface of LiNi0.5Mn1.5O4 (LNMO)/graphite high-voltage lithium ion cells by using tosylmethyl isocyanide (TosMIC) as electrolyte additive[J]. Journal of Power Sources, 2023, 576: 233227. |
41 | WANG K, GU Z Q, XI Z W, et al. Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 1396. |
42 | SU Y, LIU X S, YAN H, et al. Assembly of an elastic & sticky interfacial layer for sulfide-based all-solid-state batteries[J]. Nano Energy, 2023, 113: 108572. |
43 | LIANG J W, ZHU Y M, LI X N, et al. A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries[J]. Nature Communications, 2023, 14: 146. |
44 | KIM J, KIM M J, KIM J, et al. High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes[J]. Advanced Functional Materials, 2023, 33(12): 2211355. |
45 | PENG J A, WANG X E, LI H, et al. High-capacity, long-life iron fluoride all-solid-state lithium battery with sulfide solid electrolyte[J]. Advanced Energy Materials, 2023, 13(23): doi: 10.1002/aenm.202300706. |
46 | ASAKURA T, INAOKA T, HOTEHAMA C, et al. Stack pressure dependence of Li stripping/plating performance in all-solid-state Li metal cells containing sulfide glass electrolytes[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 31403-31408. |
47 | GAO M, GONG Z N, LI H Q, et al. Constructing a multifunctional interlayer toward ultra-high critical current density for garnet-based solid-state lithium batteries[J]. Advanced Functional Materials, 2023, 33(22): doi: 10.1002/adfm.202300319. |
48 | PANG B, WU Z, ZHANG W K, et al. Ag nanoparticles incorporated interlayer enables ultrahigh critical current density for Li6PS5Cl-based all-solid-state lithium batteries[J]. Journal of Power Sources, 2023, 563: 232836. |
49 | WAN H L, WANG Z Y, LIU S F, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design[J]. Nature Energy, 2023, 8(5): 473-481. |
50 | HUANG W Z, LIU Z Y, XU P, et al. High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites[J]. Journal of Materials Chemistry A, 2023, 11(24): 12713-12718. |
51 | YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nature Energy, 2023, 8: 800-813. |
52 | INAOKA T, ASAKURA T, OTOYAMA M, et al. Tin interlayer at the Li/Li3PS4 interface for improved Li stripping/plating performance[J]. The Journal of Physical Chemistry C, 2023, 127(22): 10453-10458. |
53 | FAN B, GUAN Z B, WU L L, et al. Particle size control of cathode components for high-performance all-solid-state lithium-sulfur batteries[J]. Journal of the American Ceramic Society, 2023, 106(10): 5781-5794. |
54 | WANG D, JHANG L-J, KOU R, et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte[J]. Nature Communications, 2023, 14: doi: 10.1038/s41467-023-37564-z. |
55 | WANG S, ZHOU J B, FENG S J, et al. Polythiocyanogen as cathode materials for high temperature all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(6): 2699-2706. |
56 | ZHONG H Y, SU Y, WU Y Q, et al. Long-life and high-loading all-solid-state Li-S batteries enabled by acetylene black with dispersed Co-N4 as single atom catalyst[J]. Advanced Energy Materials, 2023, 13(25): doi: 10.1002/aenm.202300767. |
57 | JING S H, SHEN H Q, HUANG Y T, et al. Toward the practical and scalable fabrication of sulfide-based all-solid-state batteries: Exploration of slurry process and performance enhancement via the addition of LiClO4[J]. Advanced Functional Materials, 2023, 33(24): doi: 10.1002/adfm.202214274. |
58 | FUTSCHER M H, BRINKMAN L, MÜLLER A, et al. Monolithically-stacked thin-film solid-state batteries[J]. Communications Chemistry, 2023, 6: 110. |
59 | FAN Q N, ZHANG S L, JIANG J C, et al. A green and effective organocatalyst for faster oxidation of Li2S in electrochemical processes[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202212796. |
60 | MAHATO M, NAM S, LEE M J, et al. Physicochemically interlocked sulfur covalent triazine framework for lithium-sulfur batteries with exceptional longevity[J]. Small, 2023, 19(30): doi: 10.1002/smll.202301847. |
61 | LI Y N, DENG Y R, YANG J L, et al. Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium-sulfur battery[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302267. |
62 | XING H S, GUO W L, TANG S A, et al. Long-life, high-rate rechargeable lithium batteries based on soluble bis(2-pyrimidyl) disulfide cathode[J]. Angewandte Chemie, 2023: doi: 10.1002/anie.202308561: e202308561-e202308561. |
63 | YI Y K, HAI F, TIAN X L, et al. A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion[J]. Chemical Engineering Journal, 2023, 466: 143303. |
64 | FAN Q Q, SI Y B, ZHU F L, et al. Activation of bulk Li2S as cathode material for lithium-sulfur batteries through organochalcogenide-based redox mediation chemistry[J]. Angewandte Chemie International Edition, 2023, 62(32): doi: 10.1002/anie.202306705. |
65 | LAI T X, BHARGAV A, MANTHIRAM A. Lithium tritelluride as an electrolyte additive for stabilizing lithium deposition and enhancing sulfur utilization in anode-free lithium-sulfur batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202304568. |
66 | GYULAI A, BAUER W, EHRENBERG H. Dry electrode manufacturing in a calender: The role of powder premixing for electrode quality and electrochemical performance[J]. ACS Applied Energy Materials, 2023, 6(10): 5122-5134. |
67 | WANG H A, LI J B, MIAO Z Y, et al. Hierarchical electrode architecture enabling ultrahigh-capacity LiFePO4 cathodes with low tortuosity[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26824-26833. |
68 | TRON A, HAMID R, ZHANG N X, et al. Rational optimization of cathode composites for sulfide-based all-solid-state batteries[J]. Nanomaterials, 2023, 13(2): 327. |
69 | BERNARD J C, HESTENES J C, MAYILVAHANAN K S, et al. Investigating the influence of polymer binders on liquid phase transport and tortuosity through lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2023, 170(3): 030518. |
70 | RYU M, HONG Y K, LEE S Y, et al. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication[J]. Nature Communications, 2023, 14: 1316. |
71 | SU X, FANG H, YANG H, et al. Cellulose sulfate lithium as a conductive binder for LiFePO4 cathode with long cycle life[J]. Carbohydrate Polymers, 2023, 313: 120848. |
72 | PARK J H, KIM S H, AHN K H. Role of carboxymethyl cellulose binder and its effect on the preparation process of anode slurries for Li-ion batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664: 131130. |
73 | CHANG B, YUN D H, HWANG I, et al. Carrageenan as a sacrificial binder for 5 V LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries[J]. Advanced materials, 2023, doi: 10.1002/adma.202303787:e2303787-e2303787. |
74 | PARK G, KIM H S, LEE K J. Solvent-free processed cathode slurry with carbon nanotube conductors for Li-ion batteries[J]. Nanomaterials, 2023, 13(2): 324. |
75 | TRAN H Y, LINDNER A, MENESKLOU W, et al. Toward calenderability of high-energy cathode based on NMC622 during the roll-to-roll process[J]. Energy Technology, 2023, 11(5): doi: 10.1002/ente.202201092. |
76 | BUECHELE S, LOGAN E, BOULANGER T, et al. Reversible self-discharge of LFP/graphite and NMC811/graphite cells originating from redox shuttle generation[J]. Journal of the Electrochemical Society, 2023, 170(1): 010518. |
77 | AHN S, ZOR C, YANG S X, et al. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation[J]. Nature Chemistry, 2023, 15(7): 1022-1029. |
78 | PARK J, WATANABE T, YAMAMOTO K, et al. Unique Li deposition behavior in Li3PS4 solid electrolyte observed via operando X-ray computed tomography[J]. Chemical Communications, 2023, 59(50): 7799-7802. |
79 | HUANG Y, PERLMUTTER D, SU A F H, et al. Detecting lithium plating dynamics in a solid-state battery with operando X-ray computed tomography using machine learning[J]. NPJ Computational Materials, 2023, 9: 93. |
80 | NING Z Y, LI G C, MELVIN D L R, et al. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature, 2023, 618: 287-293. |
81 | WERET M A, JIANG S K, SHITAW K N, et al. Reviving inactive lithium and stabilizing lithium deposition for improving the performance of anode-free lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(6): 2817-2823. |
82 | GU Y, YOU E M, LIN J D, et al. Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy[J]. Nature Communications, 2023, 14: 3536. |
83 | CRESSA L, SUN Y Y, ANDERSEN D, et al. Toward Operando structural, chemical, and electrochemical analyses of solid-state batteries using correlative secondary ion mass spectrometry imaging[J]. Analytical Chemistry, 2023, 95(26): 9932-9939. |
84 | BRADBURY R, KARDJILOV N, DEWALD G F, et al. Visualizing lithium ion transport in solid-state Li-S batteries using 6Li contrast enhanced neutron imaging[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302619. |
85 | BASAK S, PARK J, JO J, et al. Screening of coatings for an all-solid-state battery using in situ transmission electron microscopy[J]. Journal of Visualized Experiments, 2023(191): doi: 10.3791/64316. |
86 | LIM J, ZHOU Y D, POWELL R H, et al. Localised degradation within sulfide-based all-solid-state electrodes visualised by Raman mapping[J]. Chemical Communications, 2023, 59(51): 7982-7985. |
87 | AI Q, CHEN Z Y, ZHANG B Y, et al. High-spatial-resolution quantitative chemomechanical mapping of organic composite cathodes for sulfide-based solid-state batteries[J]. ACS Energy Letters, 2023, 8(2): 1107-1113. |
88 | QUEMIN E, DUGAS R, CHAUPATNAIK A, et al. An advanced cell for measuring in situ electronic conductivity evolutions in all-solid-state battery composites[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202301105. |
89 | CHEN Y, WU W K, GONZALEZ-MUNOZ S, et al. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy[J]. Nature Communications, 2023, 14: 1321. |
90 | WANG W, WANG J X, LIN C, et al. Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202303484. |
91 | FRANKE-LANG R, HILGER A, MANKE I, et al. 3D multiscale lithium-ion cell modeling for LiFePO4 freeze-casted electrode structures using synchrotron X-ray and FIB/SEM tomography[J]. Advanced Theory and Simulations, 2023: doi: 10.1002/adts.202300372. |
92 | WERRES M, XU Y B, JIA H, et al. Origin of heterogeneous stripping of lithium in liquid electrolytes[J]. ACS Nano, 2023, 17(11): 10218-10228. |
93 | AL-JALJOULI F, MÜCKE R, KAGHAZCHI P, et al. Microstructural parameters governing the mechanical stress and conductivity of all-solid-state lithium-ion-battery cathodes[J]. Journal of Energy Storage, 2023, 68: 107784. |
94 | GANDERT J C, MÜLLER M, PAARMANN S, et al. Effective thermal conductivity of lithium-ion battery electrodes in dependence on the degree of calendering[J]. Energy Technology, 2023, 11(8): doi: 10.1002/ente.202300259. |
95 | LOHRBERG O, VOIGT K, MALETTI S, et al. Benchmarking and critical design considerations of zero-excess Li-metal batteries[J]. Advanced Functional Materials, 2023, 33(24): doi: 10.1002/adfm.202214891. |
96 | ZHANG X H, HUANG L, XIE B, et al. Deciphering the thermal failure mechanism of anode-free lithium metal pouch batteries[J]. Advanced Energy Materials, 2023, 13(8): doi: 10.1002/aenm. 202203648. |
97 | KIM W, NOH J, LEE S, et al. Aging property of halide solid electrolyte at the cathode interface[J]. Advanced Materials, 2023, 35(32): e2301631. |
98 | MORINO Y, KANADA S. Degradation analysis by X-ray absorption spectroscopy for LiNbO3 coating of sulfide-based all-solid-state battery cathode[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2979-2984. |
99 | MORINO Y, TSUKASAKI H, MORI S. Microscopic degradation mechanism of argyrodite-type sulfide at the solid electrolyte-cathode interface[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23051-23057. |
100 | IHRIG M, KUO L Y, LOBE S, et al. Thermal recovery of the electrochemically degraded LiCoO2/Li7La3Zr2O12: Al, Ta interface in an all-solid-state lithium battery[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4101-4112. |
[1] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[2] | Cong LI, Tao WANG, Yanjie REN, Libo ZHOU, Jian CHEN, Wei CHEN. Cathodic dissolution and protection of molten carbonate fuel cells [J]. Energy Storage Science and Technology, 2023, 12(8): 2444-2456. |
[3] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[4] | Zhengguang ZHAO, Zhenying CHEN, Guangqun ZHAI, Xi ZHANG, Xiaodong ZHUANG. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. |
[5] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[6] | Hengheng XIA, Pengcheng LIANG, Zhongxun AN. Effects of sulfur-containing electrolyte additives on the performance of lithium nickel cobalt manganese oxide//graphite Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2390-2400. |
[7] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[8] | Ding ZHANG, Zixian YE, Zhenming LIU, Qun YI, Lijuan SHI, Huijuan GUO, Yi HUANG, Li WANG, Xiangming HE. Research progress of black phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490. |
[9] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
[10] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[11] | Ronghan QIAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(7): 2333-2348. |
[12] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[13] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[14] | Guiping ZHANG, Xiaoyan YAN, Bing WANG, Peixin YAO, Changjie HU, Yizhe LIU, Shuli LI, Jianjun XUE. Long life lithium iron phosphate battery and its materials and process [J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140. |
[15] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||