Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (7): 2333-2348.doi: 10.19799/j.cnki.2095-4239.2023.0425
Previous Articles Next Articles
Ronghan QIAO(), Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-06-25
Online:
2023-07-05
Published:
2023-07-25
Contact:
Xuejie HUANG
E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Ronghan QIAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023)[J]. Energy Storage Science and Technology, 2023, 12(7): 2333-2348.
1 | ZHUANG Z F, WANG J X, JIA K, et al. Ultrahigh-voltage LiCoO2 at 4.7 V by interface stabilization and band structure modification[J]. Advanced Materials, 2023, 35(22): doi: 10.1002/adma.202212059. |
2 | TAN X H, ZHANG Y X, XU S Y, et al. High-entropy surface complex stabilized LiCoO2 cathode[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300147. |
3 | COURBARON G, PETIT E, SERRANO-SEVILLANO J, et al. Improved electrochemical performance for high-voltage spinel LiNi0.5Mn1.5O4 modified by supercritical fluid chemical deposition[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2812-2824. |
4 | KHOTIMAH C, WANG F M, WOHLFAHRT-MEHRENS M, et al. Failure mechanisms of high-voltage spinel LiNi0.5Mn1.5O4 with different morphologies: Effect of self-regulation by lithium benzimidazole salt additive[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(11): 4374-4388. |
5 | MENG J N, ROBLES A, JALIFE S, et al. Cyclotetrabenzil derivatives for electrochemical lithium-ion storage[J]. Angewandte Chemie (International Ed in English), 2023: e202300892-e202300892. |
6 | SHEN J Q, SONG Y L, HE C T, et al. Pseudo single lithium-ion conductors enabled by a metal0-organic framework with biomimetic lithium-ion chains for lithium metal batteries[J]. Materials Chemistry Frontiers, 2023, 7(12): 2436-2442. |
7 | WANG X X, WANG Y L, MA H R, et al. Solid silicon nanosheet sandwiched by self-assembled honeycomb silicon nanosheets enabling long life at high current density for a lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 15409-15419. |
8 | ZHANG B, LI Z, XIE H, et al. Cross-linking chemistry enables robust conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232495. |
9 | LIU H, ZHANG J L, LIANG G Q, et al. Selective lithium recovery from black powder of spent lithium-ion batteries via sulfation reaction: Phase conversion and impurities influence[J]. Rare Metals, 2023, 42(7): 2350-2360. |
10 | HONG D G, JEONG D, KOONG C Y, et al. Ion-conducting cross-linked polyphosphazene binders for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Polymer Materials, 2023, 5(4): 2617-2627. |
11 | BÉTERMIER F, DAHER N, BLANQUER L A, et al. Understanding the electrochemical performances of Si anodes incorporating mechanically interlocked binders prepared from α-cyclodextrin-based polyrotaxanes[J]. Chemistry of Materials, 2023, 35(3): 937-947. |
12 | CAI X Y, XU J J, SHAO Y X, et al. Carboxymethyl three-dimensional cross-linked biopolymer binder for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Energy Materials, 2023, 6(9): 4559-4569. |
13 | DING X Y, XIN Y H, WANG Y S, et al. Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(18): 6879-6889. |
14 | BOLLOJU S, ABDOLLAHIFAR M, PARTHASARATHI S K, et al. Efficient utilization of macropores as artificial solid-electrolyte interphase channels for high-capacity silicon/graphite anode materials[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2623-2633. |
15 | HUANG Z J, LAI J C, LIAO S L, et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nature Energy, 2023, 8(6): 577-585. |
16 | LI C, LIANG Z, LI Z, et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries[J]. Nano Letters, 2023, doi: 10.1021/acs.nanolett.3c00783. |
17 | ZHANG Y H, ZHAO P Y, NIE Q N, et al. Enabling 420 Whkg-1 stable lithium-metal pouch cells by lanthanum doping[J]. Advanced Materials, 2023: doi: 10.1002/adma.202211032. |
18 | ZHU X X, CHENG H W, LYU S B, et al. High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300129. |
19 | LI X H, YE Q, WU Z, et al. High-voltage all-solid-state lithium batteries with Li3InCl6 electrolyte and LiNbO3 coated lithium-rich manganese oxide cathode[J]. Electrochimica Acta, 2023, 453: doi: 10.1016/j.electacta.2023.142361. |
20 | LIU C, CHEN B, ZHANG T, et al. Electron redistribution enables redox-resistible Li6PS5Cl towards high-performance all-solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2023: doi: 10.1002/anie.202302655. |
21 | GAMO H, KUSABA I, HIKIMA K, et al. Rapid solution synthesis of argyrodite-type Li6PS5X (X=Cl, Br, and I) solid electrolytes using excess sulfur[J]. Inorganic Chemistry, 2023, 62(15): 6076-6083. |
22 | YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77-83. |
23 | ZHAO E Y, LUO S Q, HU A Y, et al. Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode[J]. Chemical Engineering Journal, 2023, 463: doi: 10.1016/j.cej.2023.142306. |
24 | ZHU T Y, STERNLICHT H, HA Y, et al. Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries[J]. Nature Energy, 2023, 8(2): 129-137. |
25 | WANG H N, CHENG H, LI D G, et al. Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries[J]. Advanced Energy Materials, 2023, 13(16): doi: 10.1002/aenm.202204425. |
26 | LU X Z, CHENG Y F, LI M H, et al. A stable polymer-based solid-state lithium metal battery and its interfacial characteristics revealed by cryogenic transmission electron microscopy[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202212847. |
27 | YANG N, CUI Y, SU H, et al. A chemically bonded ultraconformal layer between the elastic solid electrolyte and lithium anode for high-performance lithium metal batteries[J]. Angewandte Chemie (International ed. in English), 2023: e202304339-e202304339. |
28 | HUANG B Q, LIU J M, HU X R, et al. Porous CoP/C derived from metal-organic framework as high-performance anode materials for superior lithium storage[J]. Ionics, 2023, 29(5): 2087-2092. |
29 | SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. |
30 | ZOU Y G, LIU G, WANG Y Q, et al. Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature[J]. Advanced Energy Materials, 2023, 13(19): doi: 10.1002/aenm.202300443. |
31 | CHENG H, JIN X, LIU S, et al. Highly stable lithium-ion wide-temperature storage performance achieved via anion-dominated solvation structure and electric double-layer engineering[J]. Journal of Power Sources, 2023, 567: 232975. |
32 | LU Y, ZHANG W, LIU S, et al. Tuning the Li plus solvation structure by a "bulky coordinating" strategy enables nonflammable electrolyte for ultrahigh voltage lithium metal batteries[J]. Acs Nano, 2023, doi: 10.1021/acsnano.3c02948. |
33 | ZHENG Y W, JI H Q, QIAN T, et al. Achieving rapid ultralow-temperature ion transfer via constructing lithium-anion nanometric aggregates to eliminate Li+-dipole interactions[J]. Nano Letters, 2023, 23(8): 3181-3188. |
34 | WANG Y, CHEN Z, WU Y X, et al. PVDF-HFP/PAN/PDA@LLZTO composite solid electrolyte enabling reinforced safety and outstanding low-temperature performance for quasi-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 21526-21536. |
35 | BUYUKER I S, PEI B, ZHOU H, et al. Voltage and temperature limits of advanced electrolytes for lithium-metal batteries[J]. ACS Energy Letters, 2023, 8(4): 1735-1743. |
36 | ADIRAJU V A K, CHAE O B, ROBINSON J R, et al. Highly soluble lithium nitrate-containing additive for carbonate-based electrolyte in lithium metal batteries[J]. ACS Energy Letters, 2023, 8(5): 2440-2446. |
37 | JIANG G X, LIU J D, HE J A, et al. Hydrofluoric acid-removable additive optimizing electrode electrolyte interphases with Li+ conductive moieties for 4.5 V lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202214422. |
38 | NGUYEN M T, PHAM H Q, BERROCAL J A, et al. An electrolyte additive for the improved high voltage performance of LiNi0.5Mn1.5O4 (LNMO) cathodes in Li-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(14): 7670-7678. |
39 | REN Z Q, QIU H Y, FAN C, et al. Delicately designed cyano-siloxane as multifunctional additive enabling high voltage LiNi0.9Co0.05Mn0.05O2/graphite full cell with long cycle life at 50 ℃[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302411. |
40 | LIANG J Y, ZHANG Y Y, XIN S, et al. Mitigating swelling of the solid electrolyte interphase using an inorganic anion switch for low-temperature lithium-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(16): doi: 10.1002/anie.202300384. |
41 | ZHANG X H, CUI Z H, JO E, et al. Inhibition of transition-metal dissolution with advanced electrolytes in batteries with silicon-graphite anodes and high-nickel cathodes[J]. Energy Storage Materials, 2023, 56: 562-571. |
42 | AN K, JOO M J, TRAN Y H T, et al. Ultrafast charging of a 4.8 V manganese-rich cathode-based lithium metal cell by constructing robust solid electrolyte interphases[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202301755. |
43 | GUO K L, ZHU C L, WANG H P, et al. Conductive Li+ moieties-rich cathode electrolyte interphase with electrolyte additive for 4.6 V well-cycled Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2023, 13(20): doi: 10.1002/aenm.202204272. |
44 | DU J M, DUAN X R, WANG W Y, et al. Mitigating concentration polarization through acid-base interaction effects for long-cycling lithium metal anodes[J]. Nano Letters, 2023, 23(8): 3369-3376. |
45 | BOORBOOR AJDARI F, FATHOLLAHI ZONOUZ A, HEYDARI A, et al. Exploring the effects of dopamine and DMMP additives on improving the cycle boosting and nonflammability of electrolytes in full-cell lithium-ion batteries (18650)[J]. The Journal of Physical Chemistry C, 2023, 127(17): 8195-8207. |
46 | KUNG Y R, LI C Y, HASIN P, et al. Effects of butadiene sulfone as an electrolyte additive on the formation of solid electrolyte interphase in lithium-ion batteries based on Li4Ti5O12 anode materials[J]. Polymers, 2023, 15(8): 1965. |
47 | BHARGAV A, ASL H Y, MANTHIRAM A. Mechanistic understanding of lithium-anode protection by organosulfide-based solid-electrolyte interphases and its implications[J]. Journal of Materials Chemistry A, 2023, 11(18): 9772-9783. |
48 | OH M G, KWAK S, AN K, et al. Perfluoro macrocyclic ether as an ambifunctional additive for high-performance SiO and nickel 88%-based high-energy Li-ion battery[J]. Advanced Functional Materials, 2023, 33(21): doi: 10.1002/adfm.202212890. |
49 | MOON H, NAM H, KIM M P, et al. Elastic interfacial layer enabled the high-temperature performance of lithium-ion batteries via utilization of synthetic fluorosulfate additive[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202303029. |
50 | TIAN R Z, WANG Z Y, LIAO J G, et al. High-voltage stability of small-size single crystal Ni-rich layered cathode for sulfide-based all-solid-state lithium battery at 4.5 V[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202300850. |
51 | KIM J, KIM M J, KIM J, et al. High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202211355. |
52 | ZOU C F, ZANG Z H, TAO X Y, et al. Stabilized cathode/sulfide electrolyte interface through conformally interfacial nanocoating for all-solid-state batteries[J]. ACS Applied Energy Materials, 2023, 6(6): 3599-3607. |
53 | FENG L, YIN Z W, WANG C W, et al. Glassy/ceramic Li2TiO3/LixByOz analogous "solid electrolyte interphase" to boost 4.5 V LiCoO2 in sulfide-based all-solid-state batteries[J]. Advanced Functional Materials, 2023, 33(16): doi: 10.1002/adfm.202210744. |
54 | ZHONG Y, FAN Z Z, ZHANG D Z, et al. Surface construction of a high-ionic-conductivity buffering layer on a LiNi0.6Co0.2Mn0.2O2 cathode for stable all-solid-state sulfide-based batteries[J]. Journal of Electronic Materials, 2023, 52(5): 2904-2912. |
55 | LI Z, MIAO J, HU W, et al. Stabilizing the oxide cathode/sulfide solid electrolyte interface via a novel polyaniline coating prepared by ball milling[J]. Chemical Communications, 2023, 59(37): 5627-5630. |
56 | KIM Y, STEPIEN D, MOON H, et al. Artificial interphase design employing inorganic-organic components for high-energy lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 20987-20997. |
57 | KIM J S, JUNG S, KWAK H, et al. Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries[J]. Energy Storage Materials, 2023, 55: 193-204. |
58 | CHANG X S, WENG W, LI M Q, et al. LiAlO2-modified Li negative electrode with Li10GeP2S12 electrolytes for stable all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 21179-21186. |
59 | CRONAU M, SZABO M, RENZ D, et al. Deposition-type lithium metal all-solid-state batteries: About the importance of stack-pressure control and the benefits of hot pressing during initial cycling[J]. Advanced Materials Interfaces, 2023, 10(8): doi: 10.1002/admi. 202202475. |
60 | WAN H L, WANG Z Y, LIU S F, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design[J]. Nature Energy, 2023, 8(5): 473-481. |
61 | ZUO M X, BI Z J, GUO X X. In-situ solidification of plastic interlayers enabling high-voltage solid lithium batteries with poly(ethylene oxide) based polymer electrolytes[J]. Chemical Engineering Journal, 2023, 463: doi: 10.1016/j.cej.2023.142463. |
62 | KIM W, NOH J, LEE S, et al. Aging property of halide solid electrolyte at the cathode interface[J]. Advanced materials (Deerfield Beach, Fla.), 2023, doi: 10.1002/adma.202301631: e2301631-e2301631. |
63 | LIANG J W, LI X N, KIM J T, et al. Halide layer cathodes for compatible and fast-charged halides-based all-solid-state Li metal batteries[J]. Angewandte Chemie International Edition, 2023, 62(13): doi: 10.1002/anie.202217081. |
64 | LIU C J, MIAO C, HE M Y, et al. Optimized layered ternary LiNi0.5Co0.2Mn0.3O2 cathode materials modified with ultrathin Li3InCl6 fast ion conductor layer for lithium-ion batteries[J]. Journal of Power Sources, 2023, 566: doi: 10.1016/j.jpowsour.2023.232961. |
65 | HU X C, CHEN S J, WANG Z Y, et al. Microstructure of the Li-Al-O second phases in garnet solid electrolytes[J]. Nano Letters, 2023, 23(3): 887-894. |
66 | ZHENG C J, LU Y, CHANG Q A, et al. High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302729. |
67 | YAO X H, LU X K, ZHOU Y D, et al. Rectifying interphases for preventing Li dendrite propagation in solid-state electrolytes[J]. Energy & Environmental Science, 2023, 16(5): 2167-2176. |
68 | XU H, ZHU Q, ZHAO Y, et al. Phase-changeable dynamic conformal electrode/electrolyte interlayer enabling pressure-independent solid-state lithium metal batteries[J]. Advanced Materials, 2023, doi: 10.1002/adma.202212111. |
69 | WU Y C, CHUNG S H. Integrated high-sulfur-loading polysulfide/carbon cathode in lean-electrolyte cell toward high-energy-density lithium-sulfur cells with stable cyclability[J]. Journal of Materials Chemistry A, 2023, 11(17): 9455-9463. |
70 | GAO X S, ZHENG C Y, SHAO Y Q, et al. Lithium iron phosphate enhances the performance of high-areal-capacity sulfur composite cathodes[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19011-19020. |
71 | YU Z, HUANG X, ZHENG M, et al. Self-assembled macrocyclic copper complex enables homogeneous catalysis for high-loading lithium-sulfur batteries[J]. Advanced materials (Deerfield Beach, Fla.), 2023, doi: 10.1002/adma.202300861: e2300861-e2300861. |
72 | WANG S, LU B, CHENG D, et al. Structural transformation in a sulfurized polymer cathode to enable long-life rechargeable lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2023, doi: 10.1021/jacs.3c00628. |
73 | SHI C, SONG J J, ZHANG Y, et al. Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes[J]. Cell Reports Physical Science, 2023, 4(3): doi:10.1016/j.xcrp.2023.101321. |
74 | QIU C D, HU Y C, CAO K W, et al. Engineering peculiar cathode electrolyte interphase toward sustainable and high-rate Li-S batteries[J]. Advanced Energy Materials, 2023, 13(19): doi: 10. 1002/aenm.202300229. |
75 | GENG C N, QU W J, HAN Z Y, et al. Superhigh coulombic efficiency lithium-sulfur batteries enabled by in situ coating lithium sulfide with polymerizable electrolyte additive[J]. Advanced Energy Materials, 2023, 13(15): doi: 10.1002/aenm.202204246. |
76 | PENG J, ZHENG X, WU Y, et al. Li2S-based composite cathode with in situ-generated Li3PS4 electrolyte on Li2S for advanced all-solid-state lithium-sulfur batteries[J]. ACS applied materials & interfaces, 2023, doi: 10.1021/acsami.3c02732. |
77 | PENG X, CHEN X, TANG C, et al. Self-healing binder for high-voltage batteries[J]. ACS applied materials & interfaces, 2023, doi: 10.1021/acsami.3c01962. |
78 | CHEN Z Z, LU M J, QIAN Y, et al. Ultra-low dosage lignin binder for practical lithium-sulfur batteries[J]. Advanced Energy Materials, 2023, 13(17): doi: 10.1002/aenm. 202370066. |
79 | RYU M, HONG Y K, LEE S Y, et al. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication[J]. Nature Communications, 2023, 14: 1316. |
80 | WANG H A, LI J B, MIAO Z Y, et al. Hierarchical electrode architecture enabling ultrahigh-capacity LiFePO4 cathodes with low tortuosity[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26824-26833. |
81 | KOMODA Y, ISHIBASHI K, KURATANI K, et al. Effects of drying rate and slurry microstructure on the formation process of LiB cathode and electrochemical properties[J]. Journal of Power Sources, 2023, 568: doi: 10.1016/j.jpowsour.2023.232983. |
82 | APACHITEI G, HIDALGO M, DOGARU D, et al. Optimisation of industrially relevant electrode formulations for LFP cathodes in lithium ion cells[J]. Batteries, 2023, 9(4): 192. |
83 | MENG Q H, FAN M, CHANG X, et al. A functional prelithiation separator promises sustainable high-energy lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(19): doi: 10.1002/aenm. 202300507. |
84 | XIANG Y X, TAO M M, CHEN X X, et al. Gas induced formation of inactive Li in rechargeable lithium metal batteries[J]. Nature Communications, 2023, 14: 177. |
85 | SADD M, XIONG S Z, BOWEN J R, et al. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy[J]. Nature Communications, 2023, 14: 854. |
86 | BRADBURY R, DEWALD G F, KRAFT M A, et al. Visualizing reaction fronts and transport limitations in solid-state Li-S batteries via operando neutron imaging[J]. Advanced Energy Materials, 2023, 13(17): doi: 10.1002/aenm.202203426. |
87 | AI Q, CHEN Z Y, ZHANG B Y, et al. High-spatial-resolution quantitative chemomechanical mapping of organic composite cathodes for sulfide-based solid-state batteries[J]. ACS Energy Letters, 2023, 8(2): 1107-1113. |
88 | LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nature Communications, 2023, 14: 259. |
89 | LEE T, QI J, GADRE C A, et al. Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3[J]. Nature Communications, 2023, 14: 1940. |
90 | MENG X, LIU Y, MA Y, et al. Diagnosing and correcting the failure of the solid-state polymer electrolyte for enhancing solid-state lithium-sulfur batteries[J]. Advanced Materials, 2023: doi: 10.1002/adma.202212039. |
91 | BRIESKE D M, WARNECKE A, SAUER D U. Modeling the volumetric expansion of the lithium-sulfur battery considering charge and discharge profiles[J]. Energy Storage Materials, 2023, 55: 289-300. |
92 | DING Y H, ZHENG Y D, LI S Y, et al. A review of battery thermal management methods for electric vehicles[J]. Journal of Electrochemical Energy Conversion and Storage, 2023, 20(2): 021002. |
93 | LIU T J, KUM L W, SINGH D K, et al. Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries[J]. ACS Omega, 2023, 8(13): 12411-12417. |
94 | GU Z, MA J, ZHU F, et al. Atomic-scale study clarifying the role of space-charge layers in a li-ion-conducting solid electrolyte[J]. Nature Communications, 2023, 14:1632. |
95 | WOODAHL C, JAMNUCH S, AMADO A, et al. Probing lithium mobility at a solid electrolyte surface[J]. Nature Materials, 2023: 1-5. |
96 | ECKHARDT J K, FUCHS T, BURKHARDT S, et al. Guidelines for impedance analysis of parent metal anodes in solid-state batteries and the role of current constriction at interface voids, heterogeneities, and SEI[J]. Advanced Materials Interfaces, 2023, 10(8): doi: 10. 1002/admi.202202354. |
97 | YAO N, YU L G, FU Z H, et al. Probing the origin of viscosity of liquid electrolytes for lithium batteries[J]. Angewandte Chemie, 2023: doi: 10.1002/anie.202305331: e202305331-e202305331. |
98 | CAI Z D, PAN T L, JIANG H Y, et al. State-of-charge estimation of lithium-ion batteries based on ultrasonic detection[J]. Journal of Energy Storage, 2023, 65: doi: 10.1016/j.est.2023.107264. |
99 | ZHANG R Z, STRAUSS F, JIANG L, et al. Transition-metal interdiffusion and solid electrolyte poisoning in all-solid-state batteries revealed by cryo-TEM[J]. Chemical Communications, 2023, 59(31): 4600-4603. |
100 | VALIYAVEETTIL-SOBHANRAJ S, CID R, THOMPSON T, et al. High-temperature thermal reactivity and interface evolution of the NMC-LATP-carbon composite cathode[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13689-13699. |
[1] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[2] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
[3] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[4] | Guiping ZHANG, Xiaoyan YAN, Bing WANG, Peixin YAO, Changjie HU, Yizhe LIU, Shuli LI, Jianjun XUE. Long life lithium iron phosphate battery and its materials and process [J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140. |
[5] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[6] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[7] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[8] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[9] | Shedong LI, Yingying SONG, Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Status and challenges in the development of room-temperature sodium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1315-1331. |
[10] | Xuanchen WANG, Da WANG, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Research progress and prospect of potassium ion battery electrolyte [J]. Energy Storage Science and Technology, 2023, 12(5): 1409-1426. |
[11] | Yongshi YU, Xianming XIA, Hongyang HUANG, Yu YAO, Xianhong RUI, Guobin ZHONG, Wei SU, Yan YU. Research progress on sodium metal anode modified by artificial interface layer [J]. Energy Storage Science and Technology, 2023, 12(5): 1380-1391. |
[12] | Chuan HU, Zhiwei HU, Zhendong LI, Shuai LI, Hao WANG, Liping WANG. Tailoring LiPF6-base electrolyte solvation structure toward a stable Lithium-rich manganese-based cathode interface [J]. Energy Storage Science and Technology, 2023, 12(5): 1604-1615. |
[13] | Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Jianguo LI, Da WANG, Shangzhuo LI, Wenbin LUO. Role of CoS2/NC in ether-based electrolytes as high-performance anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1500-1509. |
[14] | Wenchao SHI, Yu LIU, Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1589-1603. |
[15] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||