Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2444-2456.doi: 10.19799/j.cnki.2095-4239.2023.0112
• Energy Storage Materials and Devices • Previous Articles Next Articles
Cong LI1,2(), Tao WANG1,2, Yanjie REN1,2, Libo ZHOU1, Jian CHEN1, Wei CHEN1()
Received:
2023-04-13
Revised:
2023-04-23
Online:
2023-08-05
Published:
2023-08-23
Contact:
Wei CHEN
E-mail:liconghntu@csust.edu.cn;weichen@csust.edu.cn
CLC Number:
Cong LI, Tao WANG, Yanjie REN, Libo ZHOU, Jian CHEN, Wei CHEN. Cathodic dissolution and protection of molten carbonate fuel cells[J]. Energy Storage Science and Technology, 2023, 12(8): 2444-2456.
Table 1
Measures taken by researchers to improve cathode performance"
方法 | 材料 | 参考文献 | 评价/问题 |
---|---|---|---|
阴极材料替代 | LiFeO2 | [ | 电导率和催化活性较差 |
LiCoO2 | [ | 高制造成本、低机械强度 | |
LiFeO2-LiCoO2-NiO三元材料 | [ | 材料太脆、价格昂贵 | |
在NiO阴极中使用添加剂 | Co 20%(摩尔分数) | [ | 电荷转移电阻 |
Co 1.5%(摩尔分数) | [ | 低于NiO | |
Co3O4纳米粉末 | [ | ||
Ce/Co (9.5 %Co/5 % Ce) | [ | NiO阴极的孔隙率当量 | |
ZnO 2%(摩尔分数) | [ | 电荷转移电阻高于NiOZnO在熔体中溶解 | |
NiO阴极涂层 | MgO 8%(摩尔分数) | [ | 阴极极化增强 |
La 0.3%(质量分数) | [ | 降低电荷转移阻力 | |
Dy 1%(质量分数) | [ | 需要进一步的电化学测试 | |
LiMg0.05 Co0.95O2 | [ | 电导率高于裸NiO阴极 | |
LiCoO2,电化学恒电位沉积 | [ | 高电荷转移电阻 | |
5% CoO | [ | Co颗粒在Ni上的机械溶解 | |
LiCoO2PVA辅助溶胶-凝胶法 | [ | 与NiO相比提高了电压效率 | |
电镀LiCoO2 | [ | 与NiO相比提高了电压效率,但需要评估较高压力下的稳定性 | |
LSC溶胶-凝胶涂层 | [ | 较高的阴极过点位需要优化孔隙率 | |
Gd0.6Sr0.4CoO3 | [ | 有前途的涂层材料 | |
TiO2原子层沉积 | [ | 分析稳定性 | |
Co3O4原子层沉积 | [ | ||
CeO2原子层沉积 | [ | ||
Nb2O5原子层沉积 | [ | ||
镀银 | [ | 银成本太高 | |
金属泡沫载体 | [ | 工艺复杂 | |
LiNiO2颗粒 | [ | ||
添加剂对碳酸盐熔体的改性 | CaCO3 9%(摩尔分数) | [ | 添加剂的数量需要控制 |
BaCO3 9%(摩尔分数) | [ | ||
Y2O3 | [ | 负载下长期性能需要验证 | |
Gd2O3 | [ | ||
CeO2 | [ | 需研究锂化的控制 | |
La2O32% | [ | 缺少长期实验 | |
La | [ | 性能还需要补充 | |
Dy | [ |
1 | 葛睿彤, 郑艺华. 燃料电池传热传质分析进展综述[J]. 储能科学与技术, 2020, 9(1): 40-56. |
GE R T, ZHENG Y H. Summary of progress in heat and mass transfer analysis of fuel cells[J]. Energy Storage Science and Technology, 2020, 9(1): 40-56. | |
2 | 陈永珍, 韩颖, 宋文吉, 等. 绿氨能源化及氨燃料电池研究进展[J]. 储能科学与技术, 2023, 12(1): 111-119. |
CHEN Y Z, HAN Y, SONG W J, et al. Research progress of green ammonia energy and ammonia fuel cell[J]. Energy Storage Science and Technology, 2023, 12(1): 111-119. | |
3 | LEE C W, LEE M H, KANG M G, et al. Fabrication and operation characteristics of electrolyte impregnated matrix and cathode for molten carbonate fuel cells[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(2): 279-286. |
4 | LEE K J, KIM T K, KOOMSON S, et al. Performance of molten carbonate fuel cell with Li-Na and Li-K carbonate electrolyte at extremely high-temperature condition[J]. Korean Journal of Chemical Engineering, 2018, 35(10): 2010-2014. |
5 | CZELEJ K, CWIEKA K, COLMENARES J C, et al. Catalytic activity of NiO cathode in molten carbonate fuel cells[J]. Applied Catalysis B: Environmental, 2018, 222: 73-75. |
6 | KANG M G, SONG S A, JANG S C, et al. Fabrication of electrolyte-impregnated cathode by dry casting method for molten carbonate fuel cells[J]. Korean Journal of Chemical Engineering, 2012, 29(7): 876-885. |
7 | DICKS A L. Molten carbonate fuel cells[J]. Current Opinion in Solid State and Materials Science, 2004, 8(5): 379-383. |
8 | JIANG S P, LI Q F. Molten carbonate fuel cells[M]// Introduction to Fuel Cells. Singapore: Springer, 2022: 673-693. |
9 | SHARAF O Z, ORHAN M F. An overview of fuel cell technology: Fundamentals and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853. |
10 | SUNDMACHER K A, KIENLE H J, PESCH J F, et al. Molten carbonate fuel cells[M]. Weinheim, Germany: Wiley-VCH, 2007. |
11 | PACHAURI R K, CHAUHAN Y K. A study, analysis and power management schemes for fuel cells[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1301-1319. |
12 | CASSIR M, MELÉNDEZ-CEBALLOS A, RINGUEDÉ A, et al. Molten carbonate fuel cells[M]//Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2016: 71-87. |
13 | TANIMOTO K. Long-term operation of small sized single MCFCs[J]. Power Sources 1998,72: 77-82. |
14 | FAROOQUE M, YUH C, MARU H C. Carbonate fuel cell technology and materials[J]. MRS Bulletin, 2005, 30(8): 602-606. |
15 | BELHOMME C, DEVYNCK J, CASSIR M. New insight in the cyclic voltammetric behaviour of nickel in molten Li2CO3-Na2CO3 at 650 ℃[J]. Journal of Electroanalytical Chemistry, 2003, 545: 7-17. |
16 | MORITA H, KAWASE M, MUGIKURA Y, et al. Degradation mechanism of molten carbonate fuel cell based on long-term performance: Long-term operation by using bench-scale cell and post-test analysis of the cell[J]. Journal of Power Sources, 2010, 195(20): 6988-6996. |
17 | FRENI S, BARONE F, PUGLISI M. The dissolution process of the NiO cathodes for molten carbonate fuel cells: State-of-the-art[J]. International Journal of Energy Research, 1998, 22(1): 17-31. |
18 | LUNDBLAD A, SCHWARTZ S, BERGMAN B. Effect of sintering procedures in development of LiCoO2-cathodes for the molten carbonate fuel cell[J]. Journal of Power Sources, 2000, 90(2): 224-230. |
19 | GIORGI L, CAREWSKA M, PATRIARCA M, et al. Development and characterization of novel cathode materials for molten carbonate fuel cell[J]. Journal of Power Sources, 1994, 49(1/2/3): 227-243. |
20 | BERGMAN B, LAGERGREN C, LINDBERGH G, et al. Contact corrosion resistance between the cathode and current collector plate in the molten carbonate fuel cell[J]. Journal of the Electrochemical Society, 2001, 148(1): A38. |
21 | RINGUEDÉ A, WIJAYASINGHE A, ALBIN V, et al. Solubility and electrochemical studies of LiFeO2-LiCoO2-NiO materials for the MCFC cathode application[J]. Journal of Power Sources, 2006, 160(2): 789-795. |
22 | BLOOM I, LANAGAN M T, KRUMPELT M, et al. The development of LiFeO2-LiCoO2-NiO cathodes for molten carbonate fuel cells[J]. Journal of the Electrochemical Society, 1999, 146(4): 1336-1340. |
23 | WIJAYASINGHE A, BERGMAN B, LAGERGREN C. LiFeO2-LiCoO2-NiO cathodes for molten carbonate fuel cells[J]. Journal of the Electrochemical Society, 2003, 150(5): A558. |
24 | WIJAYASINGHE A, BERGMAN B, LAGERGREN C. LiFeO2-LiCoO2-NiO materials for Molten Carbonate Fuel Cell cathodes. Part Ⅰ: Powder synthesis and material characterization[J]. Solid State Ionics, 2006, 177(1/2): 165-173. |
25 | WIJAYASINGHE A, BERGMAN B, LAGERGREN C. LiFeO2-LiCoO2-NiO materials for Molten Carbonate Fuel Cell cathodes. Part Ⅱ. Fabrication and characterization of porous gas diffusion cathodes[J]. Solid State Ionics, 2006, 177(1/2): 175-184. |
26 | KUK S T, SONG Y S, KIM K. Properties of a new type of cathode for molten carbonate fuel cells[J]. Journal of Power Sources, 1999, 83(1/2): 50-56. |
27 | LI J, PU J, XIAO J-Z. Sol-gel LiCoO2 coated cathode for molten carbonate fuel cells[J]. Inorg Mater 2006,21: 420-426. |
28 | LEE H, HONG M Z, BAE S, et al. A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes[J]. Journal of Materials Chemistry, 2003, 13(10): 2626-2632. |
29 | HAN J, KIM S G, YOON S P, et al. Performance of LiCoO2-coated NiO cathode under pressurized conditions[J]. Journal of Power Sources, 2002, 106(1/2): 153-159. |
30 | KIM S G, YOON S P, HAN J, et al. A stabilized NiO cathode prepared by sol-impregnation of LiCoO2 precursors for molten carbonate fuel cells[J]. Journal of Power Sources, 2002, 112(1): 109-115. |
31 | KUK S T, SONG Y S, SUH S, et al. The formation of LiCoO2 on a NiO cathode for a molten carbonate fuel cell using electroplating[J]. Journal of Materials Chemistry, 2001, 11(2): 630-635. |
32 | HONG M Z, BAE S C, LEE H S, et al. A study of the Co-coated Ni cathode prepared by electroless deposition for MCFCs[J]. Electrochimica Acta, 2003, 48(28): 4213-4221. |
33 | RYU B H, HAN J, YOON S P, et al. Dissolution behavior of Co-coated NiO cathode in molten (Li0.62K0.38)2CO3 eutectics[J]. Journal of Power Sources, 2004, 137(1): 62-70. |
34 | FUKUI T, OHARA S, OKAWA H, et al. Properties of NiO cathode coated with lithiated Co and Ni solid solution oxide for MCFCs[J]. Journal of Power Sources, 2000, 86(1/2): 340-346. |
35 | DURAIRAJAN A, COLON-MERCADO H, HARAN B L, et al. Electrochemical characterization of cobalt-encapsulated nickel as cathodes for MCFC[J]. Journal of Power Sources, 2002, 104(2): 157-168. |
36 | ESCUDERO M J, MENDOZA L, CASSIR M, et al. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide[J]. Journal of Power Sources, 2006, 160(2): 775-781. |
37 | MANSOUR C, PAUPORTÉ T, RINGUEDÉ A, et al. Protective coating for MCFC cathode: Low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine[J]. Journal of Power Sources, 2006, 156(1): 23-27. |
38 | MENDOZA L, ALBIN V, CASSIR M, et al. Electrochemical deposition of Co3O4 thin layers in order to protect the nickel-based molten carbonate fuel cell cathode[J]. Journal of Electroanalytical Chemistry, 2003, 548: 95-107. |
39 | BRENSCHEIDT T, NITSCHKÉ F, SÖLLNER O, et al. Molten carbonate fuel cell research II. Comparing the solubility and the in-cell mobility of the nickel oxide cathode material in lithium/potassium and lithium/sodium carbonate melts[J]. Electrochimica Acta, 2001, 46(6): 783-797. |
40 | CASSIR M, MELÉNDEZ-CEBALLOS A, CHAVANNE M H, et al. ALD-processed oxides for high-temperature fuel cells[M]//Atomic Layer Deposition in Energy Conversion Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017: 209-221. |
41 | PAOLETTI C, CAREWSKA M, PRESTI R L, et al. Performance analysis of new cathode materials for molten carbonate fuel cells[J]. Journal of Power Sources, 2009, 193(1): 292-297. |
42 | GANESAN P, COLON H, HARAN B L, et al. Performance of La0.8Sr0.2CoO3 coated NiO as cathodes for molten carbonate fuel cells[J]. Journal of Power Sources, 2003, 115(1): 12-18. |
43 | SOLER J, GONZÁLEZ T, ESCUDERO M J, et al. Endurance test on a single cell of a novel cathode material for MCFC[J]. Journal of Power Sources, 2002, 106(1/2): 189-195. |
44 | SONG S A, JANG S C, HAN J, et al. Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells[J]. Journal of Power Sources, 2011, 196(23): 9900-9905. |
45 | MELÉNDEZ-CEBALLOS A, FERNÁNDEZ-VALVERDE S M, BARRERA-DÍAZ C, et al. TiO2 protective coating processed by Atomic Layer Deposition for the improvement of MCFC cathode[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13443-13452. |
46 | MELÉNDEZ-CEBALLOS A, ALBIN V, FERNÁNDEZ-VALVERDE S M, et al. Electrochemical properties of Atomic layer deposition processed CeO2 as a protective layer for the molten carbonate fuel cell cathode[J]. Electrochimica Acta, 2014, 140: 174-181. |
47 | MELÉNDEZ-CEBALLOS A, ALBIN V, RINGUEDÉ A, et al. Electrochemical behavior of Mx-1Ox (M = Ti, Ce and Co) ultra-thin protective layers for MCFC cathode[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12233-12241. |
48 | MELÉNDEZ-CEBALLOS A, FERNÁNDEZ-VALVERDE S M, ALBIN V, et al. Investigation on niobium oxide coatings for protecting and enhancing the performance of Ni cathode in the MCFC[J]. International Journal of Hydrogen Energy, 2016, 41(41): 18721-18731. |
49 | KIM D, LI H Y, LEE M H, et al. Improved performance and stability of low-temperature, molten-carbonate fuel cells using a cathode with atomic layer deposited ZrO2[J]. Journal of Power Sources, 2021, 484: 229254. |
50 | HAJ IBRAHIM S, WEJRZANOWSKI T, SOBCZAK P, et al. Insight into cathode microstructure effect on the performance of molten carbonate fuel cell[J]. Journal of Power Sources, 2021, 491: 229562. |
51 | WEJRZANOWSKI T, ĆWIEKA K, SKIBIŃSKI J, et al. Microstructure driven design of porous electrodes for molten carbonate fuel cell application: Recent progress[J]. International Journal of Hydrogen Energy, 2020, 45: 25719-25732. |
52 | ĆWIEKA K, LYSIK A, WEJRZANOWSKI T, et al. Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell[J]. Journal of Power Sources, 2021, 500: 229949. |
53 | AL A, KC A, TW A, et al. Silver coated cathode for molten carbonate fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(38):19847-19857. |
54 | WEJRZANOWSKI T, CWIEKA K, SKIBINSKI J, et al. Metallic foam supported electrodes for molten carbonate fuel cells[J]. Materials & Design, 2020, 193: 108864. |
55 | SONG S A, KIM H T, KIM K, et al. Effect of LiNiO2-coated cathode on cell performance in molten carbonate fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12085-12093. |
56 | DOYON J D, GILBERT T, DAVIES G, et al. NiO solubility in mixed alkali/alkaline earth carbonates[J]. Journal of the Electrochemical Society, 1987, 134(12): 3035-3038. |
57 | TANIMOTO K, MIYAZAKI Y, YANAGIDA M, et al. Effect of addition of alkaline earth carbonate on solubility of NiO in molten Li2CO3-Na2CO3 eutectic[J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1995, 63(4): 316-318. |
58 | MITSUSHIMA S, MATSUZAWA K, KAMIYA N, et al. Improvement of MCFC cathode stability by additives[J]. Electrochimica Acta, 2002, 47(22/23): 3823-3830. |
59 | SCACCIA S. Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives[J]. Journal of Molecular Liquids, 2005, 116(2): 67-71. |
60 | MATSUZAWA K, MIZUSAKI T, MITSUSHIMA S, et al. The effect of La oxide additive on the solubility of NiO in molten carbonates[J]. Journal of Power Sources, 2005, 140(2): 258-263. |
61 | MELÉNDEZ-CEBALLOS A, ALBIN V, CRAPART C, et al. Influence of Cs and Rb additions in LiK and LiNa molten carbonates on the behaviour of MCFC commercial porous Ni cathode[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1853-1858. |
62 | MATSUZAWA K, TATEZAWA G, MATSUDA Y, et al. Effects of rare-earth additives in Li∕Na eutectic carbonate for decreasing the solubility of NiO[J]. Journal of the Electrochemical Society, 2005, 152(6): A1116. |
63 | OTA K I, MATSUDA Y, MATSUZAWA K, et al. Effect of rare earth oxides for improvement of MCFC[J]. Journal of Power Sources, 2006, 160(2): 811-815. |
64 | TANIMOTO K, KOJIMA T, YANAGIDA M, et al. Optimization of the electrolyte composition in a (Li0.52Na0.48)2-2 xAExCO3 (AE=Ca and Ba) molten carbonate fuel cell[J]. Journal of Power Sources, 2004, 131(1/2): 256-260. |
65 | CHOI H J, IHM S K, LIM T H, et al. An evaluation of a stabilized NiO cathode for the reduction of NiO dissolution in molten carbonate fuel cells[J]. Journal of Power Sources, 1996, 61(1/2): 239-245. |
66 | ESCUDERO M J, NÓVOA X R, RODRIGO T, et al. Influence of lanthanum oxide as quality promoter on cathodes for MCFC[J]. Journal of Power Sources, 2002, 106(1/2): 196-205. |
67 | HUANG B, CHEN G, LI F, et al. Study of NiO cathode modified by rare earth oxide additive for MCFC by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2004, 49(28): 5055-5068. |
68 | DAZA L, RANGEL C M, BARANDA J, et al. Modified nickel oxides as cathode materials for MCFC[J]. Journal of Power Sources, 2000, 86(1/2): 329-333. |
69 | LIU Z P, GUO P Y, ZENG C L. Effect of Dy on the corrosion of NiO/Ni in molten (0.62Li, 0.38K)2CO3[J]. Journal of Power Sources, 2007, 166(2): 348-353. |
70 | HUANG B, YE X F, WANG S R, et al. Electrochemical performance of Y2O3/NiO cathode in the molten Li0.62/K0.38 carbonates eutectics[J]. Materials Research Bulletin, 2006, 41(10): 1935-1948. |
71 | KIM S G, YOON S P, HAN J, et al. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells[J]. Electrochimica Acta, 2004, 49(19): 3081-3089. |
72 | KIM Y S, YI C W, CHOI H S, et al. Modification of Ni-based cathode material for molten carbonate fuel cells using Co3O4[J]. Journal of Power Sources, 2011, 196(4): 1886-1893. |
73 | KIM M H, HONG M Z, KIM Y S, et al. Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC[J]. Electrochimica Acta, 2006, 51(27): 6145-6151. |
74 | HUANG B, LI F, YU Q C, et al. Study of NiO cathode modified by ZnO additive for MCFC[J]. Journal of Power Sources, 2004, 128(2): 135-144. |
75 | SIMONETTI E, PRESTI R L. Characterization of Ni porous electrode covered by a thin film of LiMg0.05Co0.95O2[J]. Journal of Power Sources, 2006, 160(2): 816-820. |
76 | ESCUDERO M J, RODRIGO T, MENDOZA L, et al. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide[J]. Journal of Power Sources, 2005, 140(1): 81-87. |
77 | MATSUZAWA K, TATEZAWA G, MATSUDA Y, et al. Effects of rare-earth additives in Li∕Na eutectic carbonate for decreasing the solubility of NiO[J]. Journal of the Electrochemical Society, 2005, 152(6): A1116. |
[1] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[2] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[3] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[4] | Zhengguang ZHAO, Zhenying CHEN, Guangqun ZHAI, Xi ZHANG, Xiaodong ZHUANG. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. |
[5] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[6] | Hengheng XIA, Pengcheng LIANG, Zhongxun AN. Effects of sulfur-containing electrolyte additives on the performance of lithium nickel cobalt manganese oxide//graphite Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2390-2400. |
[7] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[8] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
[9] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[10] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[11] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[12] | Guiping ZHANG, Xiaoyan YAN, Bing WANG, Peixin YAO, Changjie HU, Yizhe LIU, Shuli LI, Jianjun XUE. Long life lithium iron phosphate battery and its materials and process [J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140. |
[13] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[14] | Ronghan QIAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(7): 2333-2348. |
[15] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||