Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2059-2065.doi: 10.19799/j.cnki.2095-4239.2021.0628
• Energy Storage Materials and Devices • Previous Articles Next Articles
Changyang LIU1,2(), Liuzhen BIAN1,2(), Jianquan GAO1,2, Jihua PENG1,2, Jun PENG1,2, Shengli AN1,2()
Received:
2021-11-25
Revised:
2022-01-13
Online:
2022-07-05
Published:
2022-06-29
Contact:
Liuzhen BIAN, Shengli AN
E-mail:lcy520life@126.com;liuzhenbian@126.com;shengli_an@126.com
CLC Number:
Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel[J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065.
Table 1
Fitting results of LSFNi-GDC/LSGM/LSFNi-GDC symmetric cell based on LRs(R1-QPE 1 ) (R2-QPE2)."
t/℃ | Atmosphere | Rs/Ω·cm2 | R1/Ω·cm2 | C1(*10-4)/F·cm2 | f1/Hz | R2/Ω·cm2 | C2/F·cm2 | f2/Hz | Rp/Ω·cm2 |
---|---|---|---|---|---|---|---|---|---|
850 | H2 | 0.24 | 0.32 | 11.4 | 444 | 0.15 | 1.87 | 0.56 | 0.47 |
CO | 0.23 | 0.35 | 10.2 | 446 | 0.29 | 1.76 | 0.31 | 0.64 | |
800 | H2 | 0.31 | 0.57 | 7.6 | 371 | 0.12 | 1.86 | 0.69 | 0.69 |
CO | 0.31 | 0.77 | 9.2 | 222 | 0.24 | 2.08 | 0.32 | 1.01 | |
750 | H2 | 0.43 | 0.95 | 7.0 | 241 | 0.23 | 0.42 | 1.63 | 1.18 |
CO | 0.43 | 1.35 | 9.2 | 128 | 0.48 | 1.78 | 0.19 | 1.83 | |
700 | H2 | 0.66 | 2.05 | 7.6 | 102 | 0.31 | 0.30 | 1.71 | 2.36 |
CO | 0.46 | 2.69 | 11.3 | 52 | 1.13 | 1.57 | 0.15 | 3.82 |
1 | STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 433-455. |
2 | MATSUZAKI Yoshio, YASUDA Isamu. Electrochemical oxidation of H2 and CO in a H2‐H2O‐CO‐CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte[J]. Journal of the Electrochemical Society, 2000, 147(5): 1630-1635. |
3 | SASAKI K, HORI Y, KIKUCHI R, et al. Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases[J]. Journal of the Electrochemical Society, 2002, 149(3): A227-A233. |
4 | LU C, WORRELL W L, GORTE R J, et al. SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte[J]. Journal of the Electrochemical Society, 2003, 150(3): A354-A358. |
5 | LIU Q, DONG X H, XIAO G L, et al. A novel electrode material for symmetrical SOFCs[J]. Advanced Materials, 2010, 22(48): 5478-5482. |
6 | PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265-267. |
7 | KOH J H, YOO Y S, PARK J W, et al. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel[J]. Solid State Ionics, 2002, 149(3/4): 157-166. |
8 | KHAN M S, LEE S B, SONG R H, et al. Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: A review[J]. Ceramics International, 2016, 42(1): 35-48. |
9 | MUKHOPADHYAY M, MUKHOPADHYAY J, BASU R N. Functional anode materials for solid oxide fuel cell: A review[J]. Transactions of the Indian Ceramic Society, 2013, 72(3): 145-168. |
10 | SARANTARIDIS D, ATKINSON A. Redox cycling of Ni-based solid oxide fuel cell anodes: A review[J]. Fuel Cells, 2007, 7(3): 246-258. |
11 | JIANG S P, CHAN S H. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39(14): 4405-4439. |
12 | RUIZ-MORALES J C, CANALES-VÁZQUEZ J, PEÑA-MARTÍNEZ J, et al. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3- δ as both anode and cathode material with improved microstructure in solid oxide fuel cells[J]. Electrochimica Acta, 2006, 52(1): 278-284. |
13 | RUIZ-MORALES J C, CANALES-VÁZQUEZ J, SAVANIU C, et al. Materials for symmetrical solid oxide fuel cells[J]. ECS Transactions, 2007, 7(1): 905-912. |
14 | SU C, WANG W, LIU M L, et al. Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes[J]. Advanced Energy Materials, 2015, 5(14): 1500188. |
15 | SHAIKH S P S, MUCHTAR A, SOMALU M R. A review on the selection of anode materials for solid-oxide fuel cells[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1-8. |
16 | BIAN L Z, DUAN C C, WANG L J, et al. Ce-doped La0.7Sr0.3Fe0.9Ni0.1O3- δ as symmetrical electrodes for high performance direct hydrocarbon solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2017, 5(29): 15253-15259. |
17 | BIAN Liuzhen, WANG Lijun, DUAN Chuancheng, et al. Co-free La0.6Sr0.4Fe0.9Nb0.1O3 -δ symmetric electrode for hydrogen and carbon monoxide solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(60): 32210-32218. |
18 | LIU Yan, BAI Yaohui, LIU Jiang. Carbon monoxide fueled cone-shaped tubular solid oxide fuel cell with (Ni0.75Fe0.25-5% MgO)/YSZ anode[J]. Journal of the Electrochemical Society, 2013, 160(1): F13-F17. |
19 | HOMEL M, GÜR T M, KOH J H, et al. Carbon monoxide-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2010, 195(19): 6367-6372. |
20 | SUMI H, LEE Y H, MUROYAMA H, et al. Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4451-4457. |
21 | JU Young Wan, LEE Sang Won, KANG Byeong Su, et al. Phase transition of doped LaFeO3 anode in reducing atmosphere and their power generation property in intermediate temperature solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29641-29647. |
22 | DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669. |
23 | ZHU T L, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr (Ti, Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3): 478-496. |
24 | CHIBA R, YOSHIMURA F, SAKURAI Y. Properties of La1- ySryNi1- xFexO3 as a cathode material for a low-temperature operating SOFC[J]. Solid State Ionics, 2002, 152/153: 575-582. |
25 | SUN C W, HUI R, ROLLER J. Cathode materials for solid oxide fuel cells: A review[J]. Journal of Solid State Electrochemistry, 2010, 14(7): 1125-1144. |
26 | O'HAYRE RYAN, CHA SUK-WON, PRINZ FRITZ B, et al. Fuel cell fundamentals[M]. New York: John Wiley & Sons Inc, 2016. |
27 | HOLTAPPELS P, DE HAART LG J, STIMMING U, et al. Reaction of CO/CO2 gas mixtures on Ni-YSZ cermet electrodes[J]. Journal of Applied Electrochemistry, 1999, 29(5): 561-568. |
28 | PATEL H C, TABISH A N, COMELLI F, et al. Oxidation of H2, CO and syngas mixtures on ceria and nickel pattern anodes[J]. Applied Energy, 2015, 154: 912-920. |
29 | ZHU T L, TROIANI H, MOGNI L V, et al. Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: Role of stoichiometry in Sr(Ti, Fe, Ni)O3[J]. Journal of Power Sources, 2019, 439: 227077. |
30 | SHIN T H, IDA S, ISHIHARA T. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells[J]. Journal of the American Chemical Society, 2011, 133(48): 19399-19407. |
[1] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[2] | Fangfang WANG, Xiangming FENG, Guangjin ZHAO, Dawei XIA, Yuxia HU, Weihua CHEN. Identification of retired power lithium-ion batteries of chemical systems by electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2023, 12(2): 609-614. |
[3] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[4] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[5] | Yuhao ZHOU, Luoyun XÜ, Zhongping ZHANG, Lingchong LIU, Bin NAN, Haiqi ZHAO. Construction and simulation analysis of thermoelectric coupling model of lithium battery based on digital twin [J]. Energy Storage Science and Technology, 2023, 12(2): 536-543. |
[6] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[7] | Meiqian HOU, Qifan NIU, Jie XING, Yinghao SHAN. Optimal configuration of energy storage system in active distribution network with the consideration of reliability [J]. Energy Storage Science and Technology, 2023, 12(2): 504-514. |
[8] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[9] | Guihong GAO, Shenshen LI, Fuyuan LIU, Xiangkun WU, Yanxia LIU. Study on the influence of particle composition on the performance of lithium slurry batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 329-338. |
[10] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[11] | Yang LIU, Weijun TENG, Qingfa GU, Xin SUN, Yuliang TAN, Zhijin FANG, Jianlin LI. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis [J]. Energy Storage Science and Technology, 2023, 12(1): 312-318. |
[12] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[13] | Qiantong LIU, Yuanxiu XING. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model [J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. |
[14] | Sujin GE, Long ZHANG, Xiaohua YANG, Wenhao SHAN, Guangqiang XU. Simulation study on the influence of air supply method on the cooling effect of energy storage battery cluster [J]. Energy Storage Science and Technology, 2023, 12(1): 150-154. |
[15] | Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||