Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (12): 3709-3719.doi: 10.19799/j.cnki.2095-4239.2023.0685
• Special issue on composite thermal storage • Previous Articles Next Articles
Xi TIAN1(), Yaxuan XIONG1(), Jing REN2, Yanqi ZHAO3, Shihao JIN4, Shuo LI1, Yang YANG1, Yulong DING5
Received:
2023-09-30
Revised:
2023-10-11
Online:
2023-12-05
Published:
2023-12-09
Contact:
Yaxuan XIONG
E-mail:TX17731114603@163.com;xiongyaxuan@bucea.edu.cn
CLC Number:
Xi TIAN, Yaxuan XIONG, Jing REN, Yanqi ZHAO, Shihao JIN, Shuo LI, Yang YANG, Yulong DING. Effect of carbon sequestration on the performance of waste concrete shape-stable phase change composites[J]. Energy Storage Science and Technology, 2023, 12(12): 3709-3719.
Table 2
Carbon sequestration efficiency of waste concrete under different experimental conditions"
序号 | 反应气氛 | 温度/℃ | 粒径/μm | 液固比/(mL/g) | 搅拌速度/(r/min) | 反应时间/min | 气体流速/(L/min) | 固碳效率/% |
---|---|---|---|---|---|---|---|---|
1 | 纯CO2 | 30 | 270 | 20 | 430 | 60 | 3 | 12.19 |
2 | 纯CO2 | 30 | 150 | 20 | 430 | 60 | 3 | 15.15 |
3 | 纯CO2 | 30 | 75 | 20 | 430 | 60 | 3 | 19.01 |
4 | 纯CO2 | 30 | 75 | 10 | 430 | 60 | 3 | 11.10 |
5 | 纯CO2 | 30 | 75 | 15 | 430 | 60 | 3 | 15.49 |
6 | 纯CO2 | 30 | 75 | 20 | 2600 | 60 | 3 | 23.78 |
7 | 纯CO2 | 30 | 75 | 20 | 430 | 60 | 2 | 17.88 |
8 | 纯CO2 | 30 | 75 | 20 | 430 | 60 | 1 | 22.7 |
9 | 纯CO2 | 30 | 75 | 20 | 430 | 40 | 3 | 27.55 |
10 | 纯CO2 | 30 | 75 | 20 | 430 | 20 | 3 | 19.69 |
11 | 纯CO2 | 30 | 75 | 20 | 2600 | 40 | 1 | 38.92 |
1 | 朱芳啟, 江龙, 王丽伟, 等. MnCl2-CaCl2-NH3再吸附温度提升系统储能特性[J]. 化工学报, 2016, 67(4): 1453-1458. |
ZHU F Q, JIANG L, WANG L W, et al. Energy storage properties of MnCl2-CaCl2-NH3 resorption temperature-lifting system[J]. CIESC Journal, 2016, 67(4): 1453-1458. | |
2 | JIANG Y F, LIU M, SUN Y P. Review on the development of high temperature phase change material composites for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110164. |
3 | LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806. |
4 | YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377. |
5 | LI Q, CONG L, ZHANG X S, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110511. |
6 | ZHU J Q, LI R G, ZHOU W B, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(5): 950-954. |
7 | SARI A, BICER A, AL-SULAIMAN F A, et al. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties[J]. Energy and Buildings, 2018, 164: 166-175. |
8 | XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate-diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502. |
9 | LI C C, ZHANG B, LIU Q X. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29: 101339. |
10 | 闫嘉森, 韩现英, 党兆涵, 等. 石蜡/膨胀石墨/石墨烯复合相变储热材料的制备及性能[J]. 高等学校化学学报, 2022, 43(6): 326-332. |
YAN J S, HAN X Y, DANG Z H, et al. Preparation and performance of paraffin/expanded graphite/graphene composite phase change heat storage material[J]. Chemical Journal of Chinese Universities, 2022, 43(6): 326-332. | |
11 | JIANG Z, JIANG F, LI C A, et al. A form stable composite phase change material for thermal energy storage applications over 700 ℃[J]. Applied Sciences, 2019, 9(5): 814. |
12 | 卢昀坤, 唐宪友, 尹航, 等. 高温熔盐/陶瓷复合相变储热材料表面封装及防泄漏性能研究[J]. 无机盐工业, 2023: doi: 10.19964/j.issn. 1006-4990.2023-0158. |
13 | MEMON S, LIAO W Y, YANG S Q, et al. Development of composite PCMs by incorporation of paraffin into various building materials[J]. Materials, 2015, 8(2): 499-518. |
14 | SARI A, BIÇER A. Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs[J]. Energy and Buildings, 2012, 51: 73-83. |
15 | DENG J H, LI W B, JIANG D H. Study on binary fatty acids/sepiolite composite phase change material[J]. Advanced Materials Research, 2011, 374/375/376/377: 807-810. |
16 | LIU R P, ZHANG F, SU W M, et al. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2015, 134: 268-274. |
17 | LI C, HAN L, LENG G Y, et al. Nitrate salt-halloysite nanotube (HNT) composite phase change materials for thermal energy storage: The feasibility of material fabrication by using HNT as skeleton substance and its thermal properties[J]. Solar Energy Materials and Solar Cells, 2023(263): 112565. |
18 | 林伯, 句子涵, 胡定华, 等. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(S1): 29-33. |
LIN B, GOU Z H, HU D H, et al. Research on thermal performance of high thermal conductivity composite phase change material based on foamed copper framework material[J]. Materials Reports, 2022, 36(S1): 29-33. | |
19 | YAN X X, ZHAO H B, FENG Y H, et al. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials[J]. Composites Part B: Engineering, 2022, 228: 109435. |
20 | WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110328. |
21 | 王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340. |
WANG Y, HUANG Y, YAO H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340. | |
22 | XIONG Y X, WANG H X, WU Y T, et al. Carbide slag based shape-stable phase change materials for waste recycling and thermal energy storage[J]. Journal of Energy Storage, 2022, 50: 104256. |
23 | XIONG Y X, TIAN X, LI X, et al. Effects of expanded graphite on NaNO3/semi-coke ash shape-stable phase change composites for thermal energy storage[J]. Journal of Energy Storage, 2023, 72: 108648. |
24 | XIONG Y X, YAO C H, REN J, et al. Waste semicoke ash utilized to fabricate shape-stable phase change composites for building heating and cooling[J]. Construction and Building Materials, 2022, 361: 129638. |
25 | XIONG Y X, SONG C Y, REN J, et al. Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage[J]. Process Safety and Environmental Protection, 2022, 162: 346-356. |
26 | LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
27 | XIONG Y X, SUN M Y, WU Y T, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619. |
28 | ZHAO T K, SHE S F, JI X L, et al. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries[J]. Scientific Reports, 2016, 6: 33833. |
29 | RADHAKRISHNAN R, GUBBINS K E. Free energy studies of freezing in slit pores: An order-parameter approach using Monte Carlo simulation[J]. Molecular Physics, 1999, 96(8): 1249-1267. |
30 | 张东, 吴科如. 孔结构对有机相变物质相变行为的调节作用[J]. 同济大学学报(自然科学版), 2004(9): 1163-1167. |
ZHANG D, WU K R. Tuning effect of porous structure on phase changing behavior of organic phase changing matters[J]. Journal of Tongji University (Natural Science), 2004(9): 1163-1167. | |
31 | LI R G, ZHU J Q, ZHOU W B, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103: 452-458. |
[1] | Wenhui LI, Yonghan JIAO, Ge GUO, Jiajun LI, Jianqiang DENG. Research on improving cooling performance of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(9): 2833-2841. |
[2] | Yuefeng LU, Zuogang GUO, Yu GU, Min XU, Tong LIU. Analysis of new energy storage policies and business models in China and abroad [J]. Energy Storage Science and Technology, 2023, 12(9): 3019-3032. |
[3] | Hongcheng ZHAO, Zaihua LI, Junhong LAI, Yinyu CHEN, Boqi ZHANG, Kanghua GONG, Yi ZENG. Coordinated operation method of RPC-based hybrid energy storage access dual-mode traction power supply system [J]. Energy Storage Science and Technology, 2023, 12(9): 2862-2870. |
[4] | Yuefeng LI, Yintao Wei, Xianzhou PENG, Feng XIANG, Hangfeng WANG, Yong SUN, Weipan XU, Wenqiang HUANG. Thermal simulation analysis and optimal design for the influence of altitude on the forced air cooling system for energy storage lithium-ion battery pack [J]. Energy Storage Science and Technology, 2023, 12(9): 2954-2961. |
[5] | Xin GAO, Ruogu WANG, Wenjing GAO, Zejun DENG, Ruiqi LIANG, Kun YANG. Consistency evaluation method of battery pack in energy storage power station based on running data [J]. Energy Storage Science and Technology, 2023, 12(9): 2937-2945. |
[6] | Yibiao GUAN, Jinran SHEN, Jialiang LIU, Zhanzhan QU, Fei GAO, Shiyang LIU, Cuijing GUO, Shuqin ZHOU, Shanshan FU. Comprehensive performance evaluation standards for energy storage lithium-ion batteries guided by safe and high-quality applications [J]. Energy Storage Science and Technology, 2023, 12(9): 2946-2953. |
[7] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[8] | Ming LI, Jinyuan XIE, Muchu QIU, Liang SHAO, Qiang HUO. Research on balanced thermal management and energy saving of energy storage system based on planning curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2585-2593. |
[9] | Libo ZHANG, Gege WANG. Topic identification, evolution, and risk analysis of electrochemical energy storage battery technology [J]. Energy Storage Science and Technology, 2023, 12(8): 2680-2692. |
[10] | Min ZHAO, Yang LI, Jie CAI, Weibin KANG, Lei LIU. Experimental study on the performance of capillary phase-change energy storage tank for civil building [J]. Energy Storage Science and Technology, 2023, 12(8): 2626-2637. |
[11] | Xiaolong XIAO, Mingming SHI, Qi ZHOU, Yukai WEI, Bo ZHAO. Multiobjective optimization configuration of energy storage in distribution networks based on improved marine predator algorithm [J]. Energy Storage Science and Technology, 2023, 12(8): 2565-2574. |
[12] | Ke DING, Guangchao GENG, Quanyuan JIANG. Collaborative optimization method for improving the frequency response characteristics of energy storage and DC systems considering multiscenario demands [J]. Energy Storage Science and Technology, 2023, 12(8): 2649-2658. |
[13] | Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. |
[14] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[15] | Liya MA, Baohui GUO. Failure analysis and structure optimization of energy storage module [J]. Energy Storage Science and Technology, 2023, 12(7): 2194-2201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||