Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (12): 3749-3760.doi: 10.19799/j.cnki.2095-4239.2023.0548
• Special issue on composite thermal storage • Previous Articles Next Articles
Hang YIN1(), Qiang WANG1, Jiahua ZHU2(), Zhirong LIAO2(), Zinan ZHANG1, Ershu XU2, Chao XU2
Received:
2023-08-18
Revised:
2023-09-18
Online:
2023-12-05
Published:
2023-12-09
Contact:
Jiahua ZHU, Zhirong LIAO
E-mail:yinhang36@163.com;18210371612@163.com;zhirong.liao@ncepu.edu.cn
CLC Number:
Hang YIN, Qiang WANG, Jiahua ZHU, Zhirong LIAO, Zinan ZHANG, Ershu XU, Chao XU. Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycle[J]. Energy Storage Science and Technology, 2023, 12(12): 3749-3760.
Table 1
Basic design conditions of a proposed advanced adiabatic compressed air energy storage system coupled with photothermal-organic Rankine cycle[14, 19]"
参数 | 单位 | 数值 |
---|---|---|
环境压力 | bar | 1 |
环境温度 | ℃ | 25 |
压缩机等熵效率 | % | 80 |
压缩机空气质量流量 | kg/s | 3.6 |
储能时间 | h | 5 |
储气室体积 | m3 | 2000 |
储气室最大压力 | bar | 56 |
储气室最小压力 | bar | 30 |
储热时间 | h | 1 |
聚光太阳能传热介质质量流量 | kg/s | 与工质种类有关 |
塔式聚光太阳能热发电效率 | % | 12.6 |
塔式聚光太阳能集热器效率 | % | 77.8 |
槽式聚光太阳能热发电效率 | % | 15 |
槽式聚光太阳能集热器效率 | % | 66.7 |
空气汽轮机等熵效率 | % | 85 |
释能时间 | h | 1 |
有机朗肯循环汽轮机入口压力 | bar | 6 |
有机朗肯循环汽轮机出口压力 | bar | 1.3 |
有机朗肯循环汽轮机等熵效率 | % | 80 |
有机朗肯循环介质R123质量流量 | kg/s | 与工质种类有关 |
换热器最小温差 | ℃ | 5 |
Table 3
Simulation results of advanced adiabatic compressed air energy storage system coupled with photothermal-organic Rankine cycle under design conditions"
性能 | 单位 | Therminol66 | 太阳盐 |
---|---|---|---|
压缩机功耗 | kWh | 9190 | 9190 |
空气汽轮机输出功 | kWh | 7235 | 9885 |
朗肯循环汽轮机输出功 | kWh | 880 | 780 |
泵耗功 | kWh | 16.21 | 16 |
太阳能集热器吸收热量 | kWh | 11335 | 12710 |
生产热水的热量 | kWh | 4350 | 4350 |
热水的温度 | ℃ | 60.5 | 60.5 |
热水的产量 | t/d | 106.2 | 106.2 |
太阳能折算功WS | kWh | 2480.5 | 2123.8 |
储能效率ESE | % | 88.1 | 115.9 |
往返效率RTE | % | 61.6 | 68.5 |
储电折合转化系数 | % | 61.1 | 92.8 |
㶲效率 | % | 68.5 | 76.8 |
储能密度EPV | kWh/m3 | 4.212 | 5.538 |
1 | 严干贵, 冯爽, 李军徽. 风储联合发电系统研究进展[J]. 储能科学与技术, 2014, 3(4): 297-301. |
YAN G G, FENG S, LI J H. Review on combined wind power generation and energy storage systems[J]. Energy Storage Science and Technology, 2014, 3(4): 297-301. | |
2 | 张家俊, 李晓琼, 张振涛, 等. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. |
ZHANG J J, LI X Q, ZHANG Z T, et al. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. | |
3 | BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. |
4 | 王珊. 压缩空气储能耦合太阳能辅助加热系统热力性能研究[D]. 北京: 华北电力大学, 2019. |
WANG S. Study on thermal performance of solar auxiliary heating system coupled with compressed air energy storage[D].Beijing: North China Electric Power University, 2019. | |
5 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
6 | 郗向丽. 助力双碳目标,压缩空气储能正当时——专访中储国能(北京)技术有限公司CEO纪律先生[J]. 储能科学与技术, 2021, 10(3): 1215-1218. |
CHI/XI) X L. Helping the double carbon target and storing energy with compressed air at the right time—Interview with mr. discipline, CEO of China storage energy (beijing) technology co., ltd[J]. Energy Storage Science and Technology, 2021, 10(3: 1215-1218. | |
7 | 文贤馗, 李翔, 邓彤天, 等. 先进压缩空气储能系统的余热回收和利用[J]. 中国电力, 2022, 55(2): 28-34. |
WEN X K, LI X, DENG T T, et al. Waste heat recovery and utilization of advanced compressed air energy storage system[J]. Electric Power, 2022, 55(2): 28-34. | |
8 | 韩中合, 王珊, 胡志强, 等. AA-CAES+CSP系统性能及关键参数分析[J]. 太阳能学报, 2021, 42(2): 322-329. |
HAN Z H, WANG S, HU Z Q, et al. Analysis on performance and key parameters of aa-caes+csp system[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 322-329. | |
9 | RAN P, WANG Y, WANG Y S, et al. Thermodynamic, economic and environmental investigations of a novel solar heat enhancing compressed air energy storage hybrid system and its energy release strategies[J]. Journal of Energy Storage, 2022, 55: 105423. |
10 | WU S K, ZHOU C, DOROODCHI E, et al. Thermodynamic analysis of a novel hybrid thermochemical-compressed air energy storage system powered by wind, solar and/or off-peak electricity[J]. Energy Conversion and Management, 2019, 180: 1268-1280. |
11 | 年越. 先进压缩空气储能系统热力性能模拟研究[D]. 北京: 华北电力大学, 2015. |
NIAN Y. Simulation study on thermal performance of advanced compressed air energy storage system[D].Beijing: North China Electric Power University, 2015. | |
12 | RAZMI A, SOLTANI M, TORABI M. Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis[J]. Energy Conversion and Management, 2019, 195: 1199-1211. |
13 | SALEH KANDEZI M, MOUSAVI NAEENIAN S M. Thermodynamic and economic analysis of a novel combination of the heliostat solar field with compressed air energy storage (CAES); a case study at San Francisco, USA[J]. Journal of Energy Storage, 2022, 49: 104111. |
14 | 朱瑞, 徐玉杰, 李斌, 等. 太阳能蓄热式压缩空气储能系统特性分析[J]. 太阳能学报, 2019, 40(6): 1536-1544. |
ZHU R, XU Y J, LI B, et al. Performance analysis on solar heat storage type compressed air energy storage system[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1536-1544. | |
15 | MOHAMMADI A, MEHRPOOYA M. Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process[J]. Journal of Cleaner Production, 2016, 139: 372-383. |
16 | 汉京晓, 杨勇平, 侯宏娟. 太阳能热发电的显热蓄热技术进展[J]. 可再生能源, 2014, 32(7): 901-905. |
HAN J X, YANG Y P, HOU H J. Review on sensible heat thermal energy storage in solar thermal generation[J]. Renewable Energy Resources, 2014, 32(7): 901-905. | |
17 | 徐珂, 赵寅建, 刘滢, 等. YD-350(L)与TH-66导热油混兑后性能研究[J]. 工业加热, 2000, 29(6): 45-48. |
XU K, ZHAO Y J, LIU Y, et al. Research on the properties of the mixture of heat transfer oil domestic YD-350(L) and imported therminol 66[J]. Industrial Heating, 2000, 29(6): 45-48. | |
18 | 徐海卫, 常春, 余强. 太阳能热发电系统中熔融盐技术的研究与应用[J]. 热能动力工程, 2015, 30(5): 659-665, 816. |
XU H W, CHANG C, YU Q. Study and applications of the melted salt technologies in concentrating solar power generation systems[J]. Journal of Engineering for Thermal Energy and Power, 2015, 30(5): 659-665, 816. | |
19 | JI W, ZHOU Y, SUN Y, et al. Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system[J]. Energy Conversion and Management, 2017, 142: 176-187. |
20 | CHEN X T, XUE X D, SI Y, et al. Thermodynamic analysis of a hybrid trigenerative compressed air energy storage system with solar thermal energy[J]. Entropy, 2020, 22(7): 764. |
[1] | Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. |
[2] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[3] | Yucheng DAI, Zengpeng WANG, Kaibao LIU, Jiateng ZHAO, Changhui LIU. Research progress of heat storage and heat transfer enhancement based on phase change materials [J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. |
[4] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[5] | Tan SHUI, Yuting WU, Chuan LI, Qi LI. Preparation and properties of ternary nitrate-@silica microencapsulated phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3595-3604. |
[6] | Xin ZHANG, Zuoxia XING, Qitong FU, Chao ZHANG, Libing JIANG. Multiphysics study of induction heating for solid electric heat storage devices [J]. Energy Storage Science and Technology, 2023, 12(12): 3761-3769. |
[7] | Tianlie XIAO, Qingchun YU, Zhiping LIU, Shubiao YIN. Preparation and properties of modified fly ash-based high temperature-shaped composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3699-3708. |
[8] | Jingjiao LI, Cuilei YANG, Wei LI. Research on computer software processing technology in thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3895-3897. |
[9] | Limu XIAO, Xin GAO, Shihai ZHANG, Xiankui WEN. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. |
[10] | Fa MAO, Xuelai ZHANG, Weisan HUA. Research progress of aluminum potassium sulfate dodecahydrate phase-change material for thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 120-130. |
[11] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[12] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[13] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[14] | Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. |
[15] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||