Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (12): 3836-3851.doi: 10.19799/j.cnki.2095-4239.2023.0522
• Special issue on composite thermal storage • Previous Articles Next Articles
Diling ZHANG1,2(), Xiang WANG2, Haojie LI1,2, Yuqian LIU1,2, Yun HUANG2(), Ningzhong BAO1
Received:
2023-08-02
Revised:
2023-08-18
Online:
2023-12-05
Published:
2023-12-09
Contact:
Yun HUANG
E-mail:zhangdiling@ipe.ac.cn;yunhuang@ipe.ac.cn
CLC Number:
Diling ZHANG, Xiang WANG, Haojie LI, Yuqian LIU, Yun HUANG, Ningzhong BAO. Research progress on flame-retardant modification of shape-stabilized organic phase-change thermal-storage materials[J]. Energy Storage Science and Technology, 2023, 12(12): 3836-3851.
Table 2
Thermophsical properties of common organic heat storage materials[24-25]"
物质 | 熔点/℃ | 潜热/(kJ/kg) | 比热容/[kJ/(kg·℃)] |
---|---|---|---|
石蜡C13~C24 | 22~24 | 189 | 0.210 |
石蜡C18 | 28 | 244 | 0.148 |
石蜡C19 | 32 | 222 | — |
石蜡C16~C28 | 42~44 | 189 | 0.210 |
石蜡C20~C33 | 48~50 | 189 | 0.210 |
癸酸 | 32 | 152.7 | 0.153 |
月桂酸 | 42~44 | 178 | 0.147 |
棕榈酸 | 63 | 187 | 0.162 |
硬脂酸 | 69 | 202.5 | 0.172 |
棕榈酸丙酯 | 10 | 186 | — |
新戊二醇 | 44 | 117 | — |
季戊四醇 | 189 | 210 | — |
聚乙二醇 | 66 | 190 | — |
Fig. 8
Flame retardancy test of composite materials[103]: (a) Digital photo of UL-0 test of sample CPM-94; (b) Sample CPM-94% UL-15 test digital photos; (c) The LOI value of the sample (the LOI value of PMC-32 increased by 87.15%); (d) heat release rate (HRR) curve; (e) Peak HRR (pHRR) value; (f) THR curve; (g) THR value based on THR curve; (h) Carbon images of four samples after cone test"
1 | XU J Y, ZHANG X L, ZOU L G. A review: Progress and perspectives of research on the functionalities of phase change materials[J]. Journal of Energy Storage, 2022, 54: doi: 10.1016/j.est.2022.105341. |
2 | LIU K, YUAN Z F, ZHAO H X, et al. Properties and applications of shape-stabilized phase change energy storage materials based on porous material support—A review[J]. Materials Today Sustainability, 2023, 21: doi: 10.1016/j.mtsust.2023.100336. |
3 | HUANG J T, LUO Y H, WENG M, et al. Advances and Applications of Phase Change Materials (PCMs) and PCMs-based Technologies[J]. Es Materials & Manufacturing, 2021, 13: 23-39. |
4 | LV Z H, CHENG C, LV H B. Digital twins for secure thermal energy storage in building[J]. Applied Energy, 2023, 338: 120907. |
5 | RYLAND M, HE W. Domestic thermal energy storage applications: What parameters should they focus on?[J]. Journal of Energy Storage, 2023, 60: doi: 10.1016/j.est.2023.106685. |
6 | TAWALBEH M, KHAN H A, AL-OTHMAN A, et al. A comprehensive review on the recent advances in materials for thermal energy storage applications[J]. International Journal of Thermofluids, 2023, 18: https://doi.org/10.1016/j.ijft.2023.100326. |
7 | CHAVAN S, RUDRAPATI R, MANICKAM S. A comprehensive review on current advances of thermal energy storage and its applications[J]. Alexandria Engineering Journal, 2022, 61(7): 5455-5463. |
8 | LAWAG R A, ALI H M. Phase change materials for thermal management and energy storage: A review[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105602. |
9 | JOUHARA H, ŻABNIEŃSKA-GÓRA A, KHORDEHGAH N, et al. Latent thermal energy storage technologies and applications: A review[J]. International Journal of Thermofluids, 2020, 5/6: https://doi.org/10.1016/j.ijft.2020.100039. |
10 | CHINNASAMY V, HEO J, JUNG S, et al. Shape stabilized phase change materials based on different support structures for thermal energy storage applications-a review[J]. Energy, 2023, 262: https://doi.org/10.1016/j.energy.2023.128919. |
11 | LI T X, LEE J H, WANG R Z, et al. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J]. International Journal of Heat and Mass Transfer, 2014, 75: 1-11. |
12 | PRABHU P, SAWANT S. Current developments in composite phase change materials for thermal energy storage application: A review[J]. Materials Today: Proceedings, 2023, 72: 810-816. |
13 | SHARSHIR S W, JOSEPH A, ELSHARKAWY M, et al. Thermal energy storage using phase change materials in building applications: A review of the recent development[J]. Energy and Buildings, 2023, 285: 112908. |
14 | ZHANG S Q, MANCIN S, PU L. A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage[J]. Journal of Energy Storage, 2023, 62: 106825. |
15 | 宋德清, 方利国, 王聃. 相变储能材料的研究进展及在建筑中的应用[J]. 节能, 2008, 27(6): 4-7, 2. |
SONG D Q, FANG L G, WANG D. Review of study on phase change material and the application in building[J]. Energy Conservation, 2008, 27(6): 4-7, 2. | |
16 | ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. |
17 | CUI Y B, LIU C H, HU S, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials[J]. Solar Energy Materials and Solar Cells, 2011, 95(4): 1208-1212. |
18 | SHAIKH S, LAFDI K, HALLINAN K. Carbon nanoadditives to enhance latent energy storage of phase change materials[J]. Journal of Applied Physics, 2008, 103(9): doi: 10.1063/1.2903538. |
19 | CHANG Z J, WANG K, WU X H, et al. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage[J]. Journal of Energy Storage, 2022, 46: 103840. |
20 | 刘尧. 基于水性聚氨酯壳材相变储能微胶囊的制备与性能研究[D]. 青岛: 青岛科技大学, 2018. |
LIU Y. Preparation and properties of microencapsulated phase change materials(MPCM) with waterborne polyurethane as shell material[D]. Qingdao: Qingdao University of Science & Technology, 2018. | |
21 | DIMAANO M N R, ESCOTO A D. Preliminary assessment of a mixture of capric and lauric acids for low-temperature thermal energy storage[J]. Energy, 1998, 23(5): 421-427. |
22 | FELDMAN D, SHAPIRO M M, BANU D, et al. Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]. Solar Energy Materials, 1989, 18(3/4): 201-216. |
23 | HASAN A. Phase change material energy storage system employing palmitic acid[J]. Solar Energy, 1994, 52(2): 143-154. |
24 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
25 | CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. |
26 | SINGH A K, RATHORE P K S, SHARMA R K, et al. Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings[J]. Energy, 2023, 263: 125701. |
27 | NITESH K, SINGH R P K, SHARMA R K, et al. Integration of lauric acid/zeolite/graphite as shape stabilized composite phase change material in gypsum for enhanced thermal energy storage in buildings[J]. Applied Thermal Engineering, 2023, 224: https://doi.org/10.1016/j.applthermaleng.2023.120088. |
28 | ZOU D Q, MA X F, LIU X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. |
29 | 农增耀. 基于热管的储能型热管理系统性能探究及优化[D]. 包头: 内蒙古科技大学, 2022. |
NONG Z Y. Performance investigation and optimization of energy storage thermal management system base on heat pipe[D]. Baotou: Inner Mongolia University of Science & Technology, 2022. | |
30 | TANG Z Q, XU G, YANG S Q, et al. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties[J]. Powder Technology, 2021, 384: 258-266. |
31 | MAZELA B, BATISTA A, GRZEŚKOWIAK W. Expandable graphite as a fire retardant for cellulosic materials—A review[J]. Forests, 2020, 11(7): 755. |
32 | WANG H W, YIN P. A new flame retardant and its effect on the asphalt mixture[J]. Case Studies in Construction Materials, 2023, 18: e01748. |
33 | ZHANG S S, LI S N, WU Q, et al. Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties[J]. Composites Part B: Engineering, 2021, 212: https://doi.org/10.1016/j.compositesb. 2021.108699. |
34 | SHEN R Q, HATANAKA L C, AHMED L, et al. Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1443-1451. |
35 | MUHAMMED RAJI A, HAMBALI H U, KHAN Z I, et al. Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review[J]. Journal of Cellular Plastics, 2023, 59(1): 65-122. |
36 | 朱平. 功能纤维及功能纺织品[M]. 北京: 中国纺织出版社, 2006: 21-22. |
ZHU P. Functional fiber and functional textiles[M]. Beijing: China Textile&Apparel Press, 2006: 21-22. | |
37 | 刘昊育, 辛菲, 杜家盈, 等. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
LIU H Y, XIN F, DU J Y, et al. Research progress in halogen-free flame-retardant polyester composites[J]. China Plastics, 2023, 37(1): 133-143. | |
38 | Y SOLIMAN M, HASSABO A G. Environmentally friendly inorganic materials for anti-flammable cotton fabrics[J]. Journal of Textiles, Coloration and Polymer Science, 2021, 18(2): 97-110. |
39 | BHAKARE M A, LOKHANDE K D, BONDARDE M P, et al. Dual functions of bioinspired, water-based, reusable composite as a highly efficient flame retardant and strong adhesive[J]. Chemical Engineering Journal, 2023, 454: 140421. |
40 | LIU Y, ZHANG A S, CHENG Y M, et al. Recent advances in biomass phytic acid flame retardants[J]. Polymer Testing, 2023, 124: 108100. |
41 | ZUO C L, SU X W, GUO Y B, et al. Fabrication of halogen-free and phosphorus-free flame retardant and antistatic PAN fibers based on tea polyphenol phenolic resin chelated with iron (Ⅲ) ions[J]. Polymer Degradation and Stability, 2023, 214: 110384. |
42 | WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196: 29-46. |
43 | 王中立, 胡先海, 王西弱, 等. 高相容性改性氯化石蜡阻燃增塑剂的合成及在聚氯乙烯中的应用[J]. 高分子材料科学与工程, 2019, 35(8): 1-6. |
WANG Z L, HU X H, WANG X R, et al. Synthesis of high compatibility modified chlorinated paraffin as flame retardant plasticizer and its application in polyvinyl chloride[J]. Polymer Materials Science & Engineering, 2019, 35(8): 1-6. | |
44 | 高腾. 阻燃相变微胶囊的制备及在织物中的应用研究[D]. 青岛: 青岛大学, 2006. |
GAO T. The preparation of flame retardant microcapsule and phase change materials microcapsule and their application in fabric[D]. Qingdao: Qingdao University, 2006. | |
45 | XIAO W D, KIBBLE K A. Comparison of aluminium hydroxide and magnesium hydroxide as flame retardants in sebs-based composites[J]. Polymers and Polymer Composites, 2008, 16(7): 415-422. |
46 | HAURIE L, FERNÁNDEZ A I, VELASCO J I, et al. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures[J]. Polymer Degradation and Stability, 2007, 92(6): 1082-1087. |
47 | KANG M, WANG G X, LIU W X, et al. Fabrication of highly flame-retardant paper by in situ loading of magnesium hydroxide/basic magnesium chloride onto cellulose fibers[J]. Cellulose, 2023, 30(11): 7295-7312. |
48 | ZHANG H Y, WANG H Q, WANG H Q. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170: 032028. |
49 | GAO Y S, WU J W, WANG Q, et al. Flame retardant polymer/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry A, 2014, 2(29): 10996-11016. |
50 | SONG G L, MA S D, TANG G Y, et al. Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide[J]. Energy, 2010, 35(5): 2179-2183. |
51 | FANG Q, ZHAN Y Y, CHEN X, et al. A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy[J]. European Polymer Journal, 2022, 177: 111479. |
52 | YANG T H, WU Y P, CHENG Y C, et al. Synthesis of a charring agent containing triazine and benzene groups and its intumescent flame retardant performance for polypropylene[J]. Polymer Degradation and Stability, 2022, 204: 110107. |
53 | SHEN R Q, QUAN Y F, ZHANG Z R, et al. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene[J]. Industrial & Engineering Chemistry Research, 2022, 61(21): 7292-7302. |
54 | YUAN J, WANG H, WANG Y D, et al. A novel highly efficient intumescent flame-retardant polypropylene: Thermal degradation, flame retardance and mechanism[J]. Journal of Polymer Research, 2022, 29(5): 205. |
55 | YANG Y X, LI Z, WU G, et al. A novel biobased intumescent flame retardant through combining simultaneously char-promoter and radical-scavenger for the application in epoxy resin[J]. Polymer Degradation and Stability, 2022, 196: 109841. |
56 | 张平. 石蜡类相变材料的设计及其热物性与阻燃性能研究[D]. 合肥: 中国科学技术大学, 2011. |
ZHANG P. Design of paraffin as a phase change material, and study on themphysical and flame retardant properties of the phase change material[D]. Hefei: University of Science and Technology of China, 2011. | |
57 | LI S S, LIN X H, LIU Y, et al. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric[J]. Cellulose, 2019, 26(6): 4213-4223. |
58 | SHI Q, HUO S Q, WANG C, et al. A phosphorus/silicon-based, hyperbranched polymer for high-performance, fire-safe, transparent epoxy resins[J]. Polymer Degradation and Stability, 2022, 203: 110065. |
59 | 郝变芝. 无机纳米阻燃剂改性含氟聚丙烯酸酯无皂乳液的合成和性能研究[D]. 西安: 陕西科技大学, 2017. |
HAO B Z. Preparation and properties of inorganic nano flame retardant modified fluorinated polyacrylate soap-free latex[D]. Xi'an: Shaanxi University of Science & Technology, 2017. | |
60 | DA SILVA RIBEIRO S P, DE MOURA ESTEVÃO L R, PEREIRA C M C, et al. Mechanism of action of different d-spacings clays on the intumescent fire retardance of polymers[J]. Journal of Applied Polymer Science, 2013, 130(3): 1759-1771. |
61 | 蔡以兵. 阻燃定形相变材料及苯乙烯—丙烯腈基聚合物/粘土纳米复合材料的制备与性能研究[D]. 合肥: 中国科学技术大学, 2007. |
CAI Y B. The preparation, properties of fire retardant form-stable phase change material and styrene-acrylonitrile series polymer/clay nanocomposites[D]. Hefei: University of Science and Technology of China, 2007. | |
62 | GUILLAUME E, YARDIN C, AUMAITRE S, et al. Uncertainty evaluation of oxygen index determination according to ISO 4589-2[J]. Journal of Fire Sciences, 2011, 29(6): 499-508. |
63 | BORYSIAK S, PAUKSZTA D, HELWIG M. Flammability of wood-polypropylene composites[J]. Polymer Degradation and Stability, 2006, 91(12): 3339-3343. |
64 | WANG Y, JOW J, SU K, et al. Dripping behavior of burning polymers under UL94 vertical test conditions[J]. Journal of Fire Sciences, 2012, 30(6): 477-501. |
65 | 何中琴. 无毒, 无刺激性的纤维用防火阻燃剂系列[J]. 印染译丛, 1996(5): 76-78. |
66 | WELDEMHRET T G, MENGE H G, LEE D W, et al. Facile deposition of environmentally benign organic-inorganic flame retardant coatings to protect flammable foam[J]. Progress in Organic Coatings, 2021, 161: 106480. |
67 | JIN L Z, TAN Y L, YUAN S P, et al. Phytic acid-decorated κ-carrageenan/melanin hybrid aerogels supported phase change composites with excellent photothermal conversion efficiency and flame retardancy[J]. Renewable Energy, 2023, 206: 148-156. |
68 | LUO Y, XIE Y H, JIANG H, et al. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage[J]. Chemical Engineering Journal, 2021, 420: 130466. |
69 | LIAO H H, DUAN W F, LIU Y, et al. Flame retardant and leaking preventable phase change materials for thermal energy storage and thermal regulation[J]. Journal of Energy Storage, 2021, 35: 102248. |
70 | ZHANG J Y, LI X X, ZHANG G Q, et al. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system[J]. Journal of Power Sources, 2020, 480: 229116. |
71 | QIAN Y, WEI P, JIANG P K, et al. Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application[J]. Applied Energy, 2013, 106: 321-327. |
72 | XU L, LIU X A, YANG R. Flame retardant paraffin-based shape-stabilized phase change material via expandable graphite-based flame-retardant coating[J]. Molecules, 2020, 25(10): 2408. |
73 | YUAN Y, YU B, WANG W. The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system[J]. Journal of Colloid and Interface Science, 2022, 622: 367-377. |
74 | BAR M, ALAGIRUSAMY R, DAS A. Flame retardant polymer composites[J]. Fibers and Polymers, 2015, 16(4): 705-717. |
75 | 刘亮, 吴爱枝, 黄云, 等. NaNO3/SiO2/C复合无机相变储热材料阻燃性能及多升温速率下热物性与安全性[J]. 应用化工, 2021, 50(2): 359-362. |
LIU L, WU A Z, HUANG Y, et al. Flame retardancy and thermal properties and safety at multiple heating rates of NaNO3/SiO2/C composite inorganic phase change thermal storage material[J]. Applied Chemical Industry, 2021, 50(2): 359-362. | |
76 | HAN D, WANG H, LU T, et al. Scalable manufacturing green core-shell structure flame retardant, with enhanced mechanical and flame-retardant performances of polylactic acid[J]. Journal of Polymers and the Environment, 2022, 30(6): 2516-2533. |
77 | ZHANG P, HU Y, SONG L, et al. Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material[J]. Thermochimica Acta, 2009, 487(1/2): 74-79. |
78 | CAI Y B, WEI Q F, HUANG F L, et al. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites[J]. Renewable Energy, 2009, 34(10): 2117-2123. |
79 | CAI Y B, WEI Q F, HUANG F L, et al. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites[J]. Applied Energy, 2008, 85(8): 765-775. |
80 | CAI Y B, WEI Q F, SHAO D F, et al. Magnesium hydroxide and microencapsulated red phosphorus synergistic flame retardant form stable phase change materials based on HDPE/EVA/OMT nanocomposites/paraffin compounds[J]. Journal of the Energy Institute, 2009, 82(1): 28-36. |
81 | CAI Y B, HU Y, SONG L, et al. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material[J]. Energy Conversion and Management, 2007, 48(2): 462-469. |
82 | ZHANG P, HU Y, SONG L, et al. Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 360-365. |
83 | ZHANG P, SONG L, LU H D, et al. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material[J]. Energy Conversion and Management, 2010, 51(12): 2733-2737. |
84 | ZHANG P, SONG L, LU H D, et al. The thermal property and flame retardant mechanism of intumescent flame retardant paraffin system with metal[J]. Industrial & Engineering Chemistry Research, 2010, 49(13): 6003-6009. |
85 | ZHANG P, KANG M, HU Y. Influence of layered zinc hydroxide nitrate on thermal properties of paraffin/intumescent flame retardant as a phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2013, 112(3): 1199-1205. |
86 | ZHAO C Y, TAO Y B, YU Y S. Molecular dynamics simulation of nanoparticle effect on melting enthalpy of paraffin phase change material[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119382. |
87 | GULFAM R, ZHANG P, MENG Z N. Advanced thermal systems driven by paraffin-based phase change materials-A review[J]. Applied Energy, 2019, 238: 582-611. |
88 | KAHWAJI S, JOHNSON M B, KHEIRABADI A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J]. Energy, 2018, 162: 1169-1182. |
89 | WEI F, FENG C, YANG J, et al. Scalable flexible phase change materials with a swollen polymer network structure for thermal energy storage[J]. Acs Applied Materials & Interfaces, 2021, 13(49): 59364-59372. |
90 | MOCHANE M J, LUYT A S. Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends[J]. Journal of Materials Science, 2015, 50(9): 3485-3494. |
91 | WANG J P, WANG Y, YANG R. Flame retardance property of shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2015, 140: 439-445. |
92 | SHENG N, NOMURA T, ZHU C Y, et al. Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2019, 192: 8-15. |
93 | 王罡, 郭垂根, 李丽萍. 膨胀阻燃剂对石蜡/聚丙烯相变材料热降解及相变储能性能的影响[J]. 化工新型材料, 2014, 42(11): 104-106. |
WANG G, GUO C G, LI L P. Effect of intumescent flame retardant on pyrolysis and phase change energy storage property of paraffin/polypropylene blends as form-stable phase change materials[J]. New Chemical Materials, 2014, 42(11): 104-106. | |
94 | 王罡. APP/CFA膨胀阻燃石蜡—聚丙烯定形相变材料的制备与研究[D]. 哈尔滨: 东北林业大学, 2015. |
WANG G. Preparation and property of APP/CFA intumescent flame retardant paraffin-polypropylene form-stable phase change material[D]. Harbin: Northeast Forestry University, 2015. | |
95 | LI L P, WANG G, GUO C G. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials[J]. Applied Energy, 2016, 162: 428-434. |
96 | SITTISART P, FARID M M. Fire retardants for phase change materials[J]. Applied Energy, 2011, 88(9): 3140-3145. |
97 | XU L, LIU X, AN Z H, et al. EG-based coatings for flame retardance of shape stabilized phase change materials[J]. Polymer Degradation and Stability, 2019, 161: 114-120. |
98 | SUN X P, YI M M, FENG B, et al. Shape-stabilized composite phase change material PEG@TiO2 through in situ encapsulation of PEG into 3D nanoporous TiO2 for thermal energy storage[J]. Renewable Energy, 2021, 170: 27-37. |
99 | 倪旭萍. 阻燃聚氨酯相变储能材料的制备及其火灾行为研究[D]. 成都: 西南交通大学, 2015. |
NI X P. Preparation and study on the fire behavior of flame retard ant polyurethane phase change energy storage material[D]. Chengdu: Southwest Jiaotong University, 2015. | |
100 | 荆锐. 多孔碳协同强化复合相变材料的构筑及储热构效关系研究[D]. 桂林: 桂林电子科技大学, 2022. |
JING R. Construction and thermal storage structure-properties relationship of porous carbon synergistic reinforced composite phase change materials[D]. Guilin: Guilin University of Electronic Technology, 2022. | |
101 | 陈永祥. 阻燃木塑定型聚乙二醇相变材料的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2017. |
CHEN Y X. Preparation and property of flame retardant wood-plastic form-stable polyethylene glycol phase change material[D]. Harbin: Northeast Forestry University, 2017. | |
102 | 郭琪. 新型阻燃相变材料的制备与研究[D]. 上海: 上海交通大学, 2013. |
GUO Q. The study of the novel flame retardant phase change materials[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
103 | YIN G Z, YANG X M, HOBSON J, et al. Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials[J]. Composites Communications, 2022, 30: 101057. |
104 | TANWAR S, KAUR R. Fabrication and investigation on influence of metal oxide nanoparticles on thermal, flammability and UV characteristics of polyethylene glycol based phase change materials[J]. Journal of Energy Storage, 2022, 54: 105318. |
105 | CHEN T, SUN H X, MU P, et al. Fatty amines as a new family of organic phase change materials with exceptionally high energy density[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110340. |
106 | 冯一帆, 蒋思炯, 付鑫, 等. 储热技术现状及相变储热材料的研究进展[J]. 信息记录材料, 2023, 24(2): 32-36. |
FENG Y F, JIANG S J, FU X, et al. Current status of heat storage technology and research progress of phase change thermal storage materials[J]. Information Recording Materials, 2023, 24(2): 32-36. | |
107 | 汪林强. 定型相变复合材料的制备及其光热储能性能的研究[D]. 兰州: 兰州理工大学, 2022. |
WANG L Q. Preparation of shaped phase change composites and study on their photothermal energy storage properties[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
108 | ZHANG R Q, CHEN D M, CHEN L, et al. Preparation and thermal properties analysis of fatty acids/1-hexadecanol binary eutectic phase change materials reinforced with TiO2 particles[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022. 104546. |
109 | TABASSUM H, HUANG X Y, CHEN R J, et al. Tailoring thermal properties via synergistic effect in a multifunctional phase change composite based on methyl stearate[J]. Journal of Materiomics, 2015, 1(3): 229-235. |
110 | ALKHAZALEH A H, ALMANASEER W, ALKHAZALI A. Experimental investigation on thermal properties and fire performance of lauric acid/diphenyl phosphate/expanded perlite as a flame retardant phase change material for latent heat storage applications[J]. Sustainable Energy Technologies and Assessments, 2023, 56: https://doi.org/10.1016/j.seta.2023.103059. |
111 | KANG M Y, LIU Y Q, LIANG C C, et al. Phase change material microcapsules with DOPO/Cu modified halloysite nanotubes for thermal controlling of buildings: Thermophysical properties, flame retardant performance and thermal comfort levels[J]. International Journal of Heat and Mass Transfer, 2023, 207, https://doi.org/10.1016/j.ijheatmasstransfer.2023.124045. |
[1] | Shun ZHANG, Fanglei ZENG, Ning LI, Ningyi YUAN. Study on the preparation and properties of high-flame retardant sulfur cathode [J]. Energy Storage Science and Technology, 2023, 12(4): 1018-1024. |
[2] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[3] | SHEN Xiu, ZENG Yuejing, LI Ruiyang, LI Jialin, LI Wei, ZHANG Peng, ZHAO Jinbao. In situ solidification of flame-retardant lithium-ion batteries by γ-ray irradiation [J]. Energy Storage Science and Technology, 2022, 11(6): 1816-1821. |
[4] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[5] | XU Gaojie, WANG Xiao, LU Di, JANG Miaomiao, HUANG Suqi, SHANGGUAN Xuehui, CUI Guanglei. Research progress of high safety flame retardant electrolytes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1040-1059. |
[6] | HU Cejun, YANG Jijin, WANG Hangchao, CHEN Yifan, ZHANG Rongrong, LIU Wen, SUN Xiaoming. Research progress of safe lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. |
[7] | ZHU Jiaoqun, SONG Yi, ZHOU Weibing, LIU Fengli. The use of carbon materials for enhancing heat transfer of organic based composite phase change materials : A review [J]. Energy Storage Science and Technology, 2017, 6(2): 213-222. |
[8] | SHEN Wang, LEI Zhihong, XIE Lisheng, YANG Jun, NULI Yanna, WANG Jiulin. Multi-functional additive PFPN for rechargeable lithium sulfur battery with composite cathode materials [J]. Energy Storage Science and Technology, 2016, 5(4): 397-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||