Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 1082-1093.doi: 10.12028/j.issn.2095-4239.2018.0172
Previous Articles Next Articles
HU Cejun1, YANG Jijin1, WANG Hangchao2,3, CHEN Yifan2, ZHANG Rongrong2, LIU Wen2,3, SUN Xiaoming1,3
Received:
2018-09-03
Revised:
2018-09-19
Online:
2018-11-01
Published:
2018-10-19
Contact:
10.12028/j.issn.2095-4239.2018.0172
CLC Number:
HU Cejun, YANG Jijin, WANG Hangchao, CHEN Yifan, ZHANG Rongrong, LIU Wen, SUN Xiaoming. Research progress of safe lithium sulfur batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093.
[1] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. J. Am. Chem. Soc., 2013, 135 (4):1167-1176. [2] WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chem. Rev., 2014, 114 (23):11414-11443. [3] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries:A review[J]. Chem. Rev., 2017, 117 (15):10403-10473. [4] CAO R, XU W, LV D, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Adv. Energy Mater., 2015, 5 (16):1402273. [5] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2011, 11 (1):19-29. [6] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. J. Power Sources, 2010, 195 (9):2419-2430. [7] NITTA N, WU F, LEE J T, et al. Li-ion battery materials:Present and future[J]. Materials Today, 2015, 18 (5):252-264. [8] LIU X, HUANG J Q, ZHANG Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29 (20):doi:10.1002/adma.201601759. [9] YANG Y, ZHENG G, CUI Y. Nanostructured sulfur cathodes[J]. Chem. Soc. Rev., 2013, 42 (7):3018. [10] MA L, HENDRICKSON K E, WEI S, et al. Nanomaterials:Science and applications in the lithium-sulfur battery[J]. Nano Today, 2015, 10 (3):315-338. [11] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries:Electrochemistry, materials, and prospects[J]. Angew. Chem. Int. Ed. Engl., 2013, 52 (50):13186-13200. [12] ADELHELM P, HARTMANN P, BENDER C L, et al. From lithium to sodium:Cell chemistry of room temperature sodium-air and sodium-sulfur batteries[J]. Beilstein. J. Nanotechnol., 2015, 6:1016-1055. [13] LI M, CHEN Z, WU T, et al. Li2S-or S-based lithium-ion batteries[J]. Adv. Mater., 2018, e1801190. [14] CHIANG Y M. Materials science. Building a better battery[J]. Science, 2010, 330 (6010):1485-1486. [15] LEI T, CHEN W, HUANG J, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7 (4):1601843. [16] CHUNG S H, CHANG C H, MANTHIRAM A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm. 20180118. [17] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7 (24):doi:10.1002/aenm.201700260. [18] CHENG Z, PAN H, ZHONG H, et al. Porous organic polymers for polysulfide trapping in lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201707597. [19] LI G, WANG S, ZHANG Y, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2018, 30 (22):e1705590. [20] FANG R, ZHAO S, SUN Z, et al. More reliable lithium-sulfur batteries:status, solutions and prospects[J]. Adv. Mater., 2017, 29 (48):doi:10.1002/adma.201606823. [21] ZHANG S, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5 (16):doi:10.1002/aenm.201500117. [22] ROSENMAN A, MARKEVICH E, SALITRA G, et al. Review on Li-sulfur battery systems:An integral perspective[J]. Advanced Energy Materials, 2015, 5 (16):doi:10.1002/aenm.201500212. [23] SEH Z W, YU J H, LI W, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nat. Commun., 2014, 5:5017. [24] PENG H J, ZHANG G, CHEN X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2016, 55 (42):12990-12995. [25] LIU W, LIN D C, PEI A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J]. Journal of the American Chemical Society, 2016, 138 (47):15443-15450. [26] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 6:doi:10.1038/nenergy.2017.119. [27] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries:A review[J]. Chem. Rev., 2017, 117 (15):10403-10473. [28] ZHENG G, LEE S W, LIANG Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotech, 2014, 9 (8):618-623. [29] LIU Y Y, LIN D C, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29 (10):doi:10.1002/adma.201605531. [30] LIU K, PEI A, LEE H R, et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer[J]. Journal of the American Chemical Society, 2017, 139 (13):4815-4820. [31] ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. Journal of the American Chemical Society, 2017, 139 (33):11550-11558. [32] LIN D C, LIU Y Y, CHEN W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon[J]. Nano Lett., 2017, 17 (6):3731-3737. [33] ZHAO J, ZHOU G, YAN K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology, 2017, 12 (10):993-999. [34] XU R, ZHANG X Q, CHENG X B, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201705838. [35] ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27 (10):doi:10.1002/adfm.201605989. [36] LI G, GAO Y, HE X, et al. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries[J]. Nature Communications, 2017, 8 (1):850. [37] ELAZARI R, SALITRA G, TALYOSEF Y, et al. Morphological and structural studies of composite sulfur electrodes upon cycling by hrtem, afm and raman spectroscopy[J]. Journal of the Electrochemical Society, 2010, 157 (10):A1131. [38] MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of the Electrochemical Society, 2004, 151 (11):A1969. [39] HAGEN M, HANSELMANN D, AHLBRECHT K, et al. Lithium-sulfur cells:The gap between the state-of-the-art and the requirements for high energy battery cells[J]. Advanced Energy Materials, 2015, 5 (16):doi:10.1002/aenm.201401986. [40] SUN Y Z, HUANG J Q, ZHAO C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China Chemistry, 2017, 60 (12):1508-1526. [41] YU X, JOSEPH J, MANTHIRAM A. Polymer lithium-sulfur batteries with a Nafion membrane and an advanced sulfur electrode[J]. Journal of Materials Chemistry A, 2015, 3 (30):15683-15691. [42] BAUER I, THIEME S, BR CKNER J, et al. Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators[J]. Journal of Power Sources, 2014, 251:417-422. [43] HUANG J Q, ZHUANG T Z, ZHANG Q, et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries[J]. ACS Nano, 2015, 9 (3):3002-3011. [44] ZHOU G, LI L, WANG D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27 (4):641-647. [45] LI W, HICKS-GARNER J, WANG J, et al. V2O5 polysulfide anion barrier for long-lived Li-S batteries[J]. Chemistry of Materials, 2014, 26 (11):3403-3410. [46] ZHUANG T Z, HUANG J Q, PENG H J, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12 (3):381-389. [47] CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28 (15):2888-2895. [48] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114 (23):11503-11618. [49] XU R C, XIA X H, WANG X L, et al. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5 (6):2829-2834. [50] WANG Q, WEN Z, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. Chemical Communications, 2016, 52 (8):1637-1640. [51] FURUKAWA K, OKAJIMA K, SUDOH M. Structural control and impedance analysis of cathode for direct methanol fuel cell[J]. Journal of Power Sources, 2005, 139 (1/2):9-14. [52] ZHU S, MA F, WANG Y, et al. New small molecule gel electrolyte with high ionic conductivity for Li-S batteries[J]. Journal of Materials Science, 2016, 52 (7):4086-4095. [53] YANG W, YANG W, FENG J, et al. High capacity and cycle stability rechargeable lithium-sulfur batteries by sandwiched gel polymer electrolyte[J]. Electrochimica Acta, 2016, 210:71-78. [54] 王维坤, 王安邦, 金朝庆, 等. 高性能锂硫电池正极材料研究进展及构建策略[J]. 储能科学与技术, 2017, 6 (3):331-344. WANG Weikun, WANG Anbang, JIN Chaoqing, et al. Research development and progress of high performance cathode design for lithium sulfur batteries.[J]. Energy Storage Science and Technology, 2017, 6 (3):331-344 [55] YAN K, LU Z, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1 (3):doi:10.1038/nenergy.2016.10. [56] LIU Y, LIN D, LIANG Z, et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode[J]. Nature Communications, 2016, 7:doi:10.1038/ncomms10992. [57] ZUO T T, WU X W, YANG C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials, 2017, 29 (29):doi:10.1002/adma.201700389. [58] WANG Q, YANG C, YANG J, et al. Stable Li metal anode with protected interface for high-performance Li metal batteries[J]. Energy Storage Materials, 2018, 15:249-256. [59] WANG M, WANG W, WANG A, et al. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries[J]. Chemical Communications, 2013, 49 (87):10263-10265. [60] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8 (6):500-506. [61] TAO X, WANG J, YING Z, et al. Strong sulfur binding with conducting Magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14 (9):5288-5294. [62] WEI SEH Z, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nat. Commun., 2013, 4:1331. [63] YIN Y X, XIN S, WAN L J, et al. SnO hollow spheres:Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage[J]. Science China Chemistry, 2012, 55 (7):1314-1318. [64] QIU Y, LI W, ZHAO W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Lett., 2014, 14 (8):4821-4827. [65] XIAO L, CAO Y, XIAO J, et al. A soft approach to encapsulate sulfur:polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24 (9):1176-1181. [66] QU C, CHEN Y, YANG X, et al. LiNO3-free electrolyte for Li-S battery:A solvent of choice with low K sp of polysulfide and low dendrite of lithium[J]. Nano Energy, 2017, 39:262-272. [67] WANG J, LIN F, JIA H, et al. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode[J]. Angewandte Chemie, 2014, 53 (38):10099-10104. [68] JIA H, WANG J, LIN F, et al. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes[J]. Chemical Communications, 2014, 50 (53):7011-7013. [69] SHI P, ZHENG H, LIANG X, et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries[J]. Chemical Communications, 2018, 54 (35):4453. [70] CHEN S, ZHENG J, YU L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2 (8):1548-1558. [71] PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46 (17):5237-5288. [72] XIAO J. Understanding the lithium sulfur battery system at relevant scales[J]. Advanced Energy Materials, 2015, 5 (16):doi:10.1002/aenm.201501102. [73] ZHANG S S. Liquid electrolyte lithium/sulfur battery:Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231:153-162. |
[1] | Yuqi SUN, Feng WEI, Hong ZHOU, Chaofeng ZHOU. Analysis of global lithium-sulfur battery technology competition from the perspective of patent [J]. Energy Storage Science and Technology, 2022, 11(5): 1657-1666. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[4] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[5] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[6] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[7] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[8] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[9] | Bin XIE, Jia'nan SUN. Development of high specific energy lithium-sulfur cell module based on mechanical simulations [J]. Energy Storage Science and Technology, 2021, 10(2): 586-597. |
[10] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
[11] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[12] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[13] | Peng GAO, Shan ZHANG, Liubin BEN, Wenwu ZHAO, Zhongzhu LIU, Rogerio RIBAS, Yongming ZHU, Xuejie HUANG. Application of niobium in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. |
[14] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[15] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||