Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2971-2979.doi: 10.19799/j.cnki.2095-4239.2022.0129
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Xiaoqian GENG1,2(), Yujie XU1,2, Jingjian HUANG1,2, Haoshu LIN1,2, Xuehui ZHANG1,2, Shuang SUN1, Haisheng CHEN1,2()
Received:
2022-03-10
Revised:
2022-04-14
Online:
2022-09-05
Published:
2022-08-30
Contact:
Haisheng CHEN
E-mail:gengxiaoqian@iet.cn;chen_hs@iet.cn
CLC Number:
Xiaoqian GENG, Yujie XU, Jingjian HUANG, Haoshu LIN, Xuehui ZHANG, Shuang SUN, Haisheng CHEN. Life cycle energy consumption and carbon emissions of advanced adiabatic compressed air energy storage[J]. Energy Storage Science and Technology, 2022, 11(9): 2971-2979.
1 | CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312. |
2 | GUO C B, PAN L H, ZHANG K N, et al. Comparison of compressed air energy storage process in aquifers and Caverns based on the Huntorf CAES plant[J]. Applied Energy, 2016, 181: 342-356. |
3 | HYDROSTOR. Hydrostor and NRStor announce completion of world's first commercial advanced-CAES facility[EB/OL]. [2022-02-21]. https://www.hydrostor.ca/news-press-1/. |
4 | HYDROSTOR. Hydrostor files application for certification for 400 MW x 8 hour (3,200 MWh) pecho energy storage center[EB/OL]. [2022-02-21]. https://www.hydrostor.ca/hydrostor-files-application-for-certification-for-400-mw-x-8-hour-3200-mwh-pecho-energy-storage-center/. |
5 | HIGHVIEW. Highview enlasa developing 50 MW/500 MWh liquid air energy storage facility in the atacama region of chile[EB/OL]. [2022-02-21]. https://highviewpower.com/news_announcement/highview-enlasa-developing-50 mw-500 mwh-liquid-air-energy-storage-facility-in-the-atacama-region-of-chile/. |
6 | BOLLINGER B. Demonstration of isothermal compressed air energy storage to support renewable energy production[R]. Office of Scientific and Technical Information (OSTI), 2015. |
7 | 中国科学院工程热物理研究所. 山东肥城国际首套盐穴先进压缩空气储能国家示范电站正式并网发电[EB/OL]. [2022-02-21]. http://www.iet.cas.cn/news/zh/202109/t2021 0923_6214054.html. |
Institute of Engineering Thermophysics of Chinese Academy of Sciences. National demonstration salt cavern advanced compressed air storage power plant is officially connected to the grid at Shandong Feicheng. [EB/OL]. [2022-02-21]. http://www.iet.cas.cn/news/zh/202109/t2021 0923_6214054.html. | |
8 | 中国科学院工程热物理研究所. 国际首套百兆瓦先进压缩空气储能国家示范项目顺利并网[EB/OL]. [2022-02-21]. https://www.cas.cn/syky/202201/t20220102_4820551.shtml. |
Institute of Engineering Thermophysics of Chinese Academy of Sciences. The first hundred-megawatt advanced compressed air energy storage national demonstration project was successfully connected to the grid [EB/OL]. [2022-02-21]. https://www.cas.cn/syky/202201/t202 20102_4820551.s html. | |
9 | RAUGEI M, LECCISI E, FTHENAKIS V M. What are the energy and environmental impacts of adding battery storage to photovoltaics? A generalized life cycle assessment[J]. Energy Technology, 2020, 8(11): doi:10.1002/ente.201901146.[LinkOut] |
10 | STERNBERG A, BARDOW A. Power-to-What?—Environmental assessment of energy storage systems[J]. Energy & Environmental Science, 2015, 8(2): 389-400. |
11 | STOUGIE L, DEL SANTO G, INNOCENTI G, et al. Multi-dimensional life cycle assessment of decentralised energy storage systems[J]. Energy, 2019, 182: 535-543. |
12 | ALSHAFI M, BICER Y. Life cycle assessment of compressed air, vanadium redox flow battery, and molten salt systems for renewable energy storage[J]. Energy Reports, 2021, 7: 7090-7105. |
13 | KAPILA S, ONI A O, GEMECHU E D, et al. Development of net energy ratios and life cycle greenhouse gas emissions of large-scale mechanical energy storage systems[J]. Energy, 2019, 170: 592-603. |
14 | DENHOLM P, KULCINSKI G L. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems[J]. Energy Conversion and Management, 2004, 45(13/14): 2153-2172. |
15 | BOUMAN E A, OBERG M M, HERTWICH E G. Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES)[J]. Energy, 2016, 95: 91-98. |
16 | LI R X, ZHANG H R, CHEN H, et al. Hybrid techno-economic and environmental assessment of adiabatic compressed air energy storage system in China-Situation[J]. Applied Thermal Engineering, 2021, 186: doi: 10.1016/j.applthermaleng.2020.116443. |
17 | 杨东, 刘晶茹, 杨建新, 等. 基于生命周期评价的风力发电机碳足迹分析[J]. 环境科学学报, 2015, 35(3): 927-934. |
YANG D, LIU J R, YANG J X, et al. Carbon footprint of wind turbine by life cycle assessment[J]. Acta Scientiae Circumstantiae, 2015, 35(3): 927-934. | |
18 | ARVANITOYANNIS I S. ISO 14040: life cycle assessment (LCA)—principles and guidelines[M]//Waste Management for the Food Industries. Amsterdam: Elsevier, 2008: 97-132. |
19 | Huibregts M, Steinmann Z, Elshout P, et al. A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level[J]. National Institute for Public Health and the Environment, 2016:doi:10.1007/s11367-016-1246-y. |
20 | 中华人民共和国住房和城乡建设部. 机械工业工程节能设计规范: GB 50910—2013[S]. 北京: 中国计划出版社, 2014. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of energy conservation of mechanical industrial engineering: GB 50910—2013[S]. Beijing: China Planning Press, 2014. | |
21 | 机械电子工业部第二设计研究院. 通用机械节能设计技术规定: JBJ 20—1990[S]. 北京:机械工业出版社,1991. |
Second Design and Research Institute of Ministry of Mechatronics Industry. Technical provisions for energy-saving design of general machinery: JBJ 20-1990[S]. Beijing:China Machine Press,1991. | |
22 | 王亮. 基于多种清单分析方法的压缩机转子生命周期评价[D]. 大连: 大连理工大学, 2017. |
WANG L. Life cycle assessment of compressor rotors based on multiple inventory analysis methods[D]. Dalian: Dalian University of Technology, 2017. | |
23 | SHI J L, LI T, ZHANG H C, et al. Energy consummation and environmental emissions assessment of a refrigeration compressor based on life cycle assessment methodology[J]. The International Journal of Life Cycle Assessment, 2015, 20(7): 947-956. |
[1] | Guanghua WU, Hongsheng LI, Fei LI, Bo CHEN, Shike ZHANG. Research on the prediction of carbon emissions in the whole life cycle of electric vehicles considering time correlation [J]. Energy Storage Science and Technology, 2022, 11(7): 2206-2212. |
[2] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[3] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[4] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[5] | Qi XIA, Yang HE, Yujie XU, Haisheng CHEN, Jianqiang DENG. Matching performance between the trigeneration of an adiabatic compressed air energy storage system and load [J]. Energy Storage Science and Technology, 2021, 10(5): 1494-1502. |
[6] | Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. |
[7] | Shenghui ZHOU, Yang HE, Haisheng CHEN, Yujie XU, Jianqiang DENG. Using an ejector to intensify the charging process of a compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1503-1513. |
[8] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[9] | Xing WANG, Wen LI, Yangli ZHU, Zhitao ZUO, Haisheng CHEN. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine [J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. |
[10] | Ran XU, Zhitao ZUO, Ao LI, Xia WANG, Ming CHEN, Haisheng CHEN. Water evolution characteristics of piston compressors under varying operating conditions based on the moisture separation coefficient [J]. Energy Storage Science and Technology, 2021, 10(5): 1556-1564. |
[11] | Shan HU, Chang LIU, Yujie XU, Haisheng CHEN, Huan GUO. Thermo-economic analysis of compressed air energy storage under peak load shaving condition [J]. Energy Storage Science and Technology, 2021, 10(5): 1607-1613. |
[12] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[13] | Xiaolu WANG, Huan GUO, Hualiang ZHANG, Yujie XU, Yingjun LIU, Haisheng CHEN. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants [J]. Energy Storage Science and Technology, 2021, 10(2): 598-610. |
[14] | Zhongming JIANG, Jing GUO, Dong TANG. A thermodynamic model of compressed humid air within an underground rock cavern for compressed air energy storage [J]. Energy Storage Science and Technology, 2021, 10(2): 638-646. |
[15] | Fa WAN, Zhongming JIANG, Dong TANG. The influence of CAES reservoir design parameters on thermodynamic properties [J]. Energy Storage Science and Technology, 2021, 10(1): 370-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||