Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2959-2970.doi: 10.19799/j.cnki.2095-4239.2022.0123
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Jiangfeng LI1,2(), Shuaiqi LI1, Xianzhen RUAN3, Lei XU3, Xiaochun ZHANG3, Wenji SONG1(), Ziping FENG1
Received:
2022-03-09
Revised:
2022-04-01
Online:
2022-09-05
Published:
2022-08-30
Contact:
Wenji SONG
E-mail:lijiangfengqaz@163.com;songwj@ms.giec.ac.cn
CLC Number:
Jiangfeng LI, Shuaiqi LI, Xianzhen RUAN, Lei XU, Xiaochun ZHANG, Wenji SONG, Ziping FENG. Review of CO2 heat pump and thermal management for pure electric vehicle[J]. Energy Storage Science and Technology, 2022, 11(9): 2959-2970.
1 | 袁泉, 汤奕. 基于路-电耦合网络的电动汽车需求响应技术[J]. 中国电机工程学报, 2021, 41(5): 1627-1637. |
YUAN Q, TANG Y. Electric vehicle demand response technology based on traffic-grid coupling networks[J]. Proceedings of the CSEE, 2021, 41(5): 1627-1637. | |
2 | 胡建, 林春景, 郝维健, 等. 动力电池标准体系建设现状及建议[J]. 储能科学与技术, 2022, 11(1): 313-320. |
HU J, LIN C J, HAO W J, et al. Current status and suggestions for the construction of power battery standard system[J]. Energy Storage Science and Technology, 2022, 11(1): 313-320. | |
3 | YOKOYAMA A, OSAKA T, IMANISHI Y, et al. Thermal management system for electric vehicles[J]. SAE International Journal of Materials and Manufacturing, 2011, 4(1): 1277-1285. |
4 | LEE J T, KWON S, LIM Y, et al. Effect of air-conditioning on driving range of electric vehicle for various driving modes[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. |
5 | 王正, 张俊华. 欧盟汽车空调指令对汽车企业的影响分析[J]. 制冷与空调(四川), 2014, 28(4): 491-495. |
WANG Z, ZHANG J H. The effect analysis of EU vehicle air-condition directives to civil automobile companies[J]. Refrigeration & Air Conditioning, 2014, 28(4): 491-495. | |
6 | 王雷, 窦艳伟, 王黎. 美国SNAP在制冷剂HCFC替代中的作用[J]. 电器, 2016(2): 64-65. |
7 | LORENTZEN G, PETTERSEN J. A new, efficient and environmentally benign system for car air-conditioning[J]. International Journal of Refrigeration, 1993, 16(1): 4-12. |
8 | ARAL M C, SUHERMANTO M, HOSOZ M. Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a[J]. Science and Technology for the Built Environment, 2021, 27(1): 44-60. |
9 | SHI J Y,GAO T Y,LU B Q,et al. Researches on heat pump system using rotary compressor in electric vehicle[C]// 16th International Refrigeration and Air Conditioning Conference, 2016. |
10 | YU B B, YANG J Y, WANG D D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: doi: 10.1016/j.energy.2019.116147. |
11 | 李敏霞, 马一太, 李丽新, 苏维城. CO2跨临界循环制冷压缩机的研究进展[J]. 压缩机技术, 2004(5): 38-42. |
LI M X, MA Y T, LI L X, et al. Reviews of refrigeration compressor in CO2 transcritical cycle[J]. Compressor Technology, 2004(5): 38-42. | |
12 | PETTERSEN J, HAFNER A, SKAUGEN G, et al. Development of compact heat exchangers for CO2 air-conditioning systems[J]. International Journal of Refrigeration, 1998, 21(3): 180-193. |
13 | YANG J L, MA Y T, LI M X, et al. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander[J]. Energy, 2005, 30(7): 1162-1175. |
14 | RIGOLA J, ABLANQUE N, PÉREZ-SEGARRA C D, et al. Numerical simulation and experimental validation of internal heat exchanger influence on CO2 trans-critical cycle performance[J]. International Journal of Refrigeration, 2010, 33(4): 664-674. |
15 | ROBINSON D M, GROLL E A. Efficiencies of transcritical CO2 cycles with and without an expansion turbine[J]. International Journal of Refrigeration, 1998, 21(7): 577-589. |
16 | RIGOLA J, ABLANQUE N, PÉREZ-SEGARRA C D, et al. Numerical simulation and experimental validation of internal heat exchanger influence on CO2 trans-critical cycle performance[J]. International Journal of Refrigeration, 2010, 33(4): 664-674. |
17 | CHO H, RYU C, KIM Y. Cooling performance of a variable speed CO2 cycle with an electronic expansion valve and internal heat exchanger[J]. International Journal of Refrigeration, 2007, 30(4): 664-671. |
18 | TORRELLA E, SÁNCHEZ D, LLOPIS R, et al. Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data[J]. International Journal of Refrigeration, 2011, 34(1): 40-49. |
19 | 赵玲华, 魏新利, 杨凌晓, 等. 回热对跨临界CO2热泵系统性能影响的实验研究[J]. 工程热物理学报, 2020, 41(1): 186-195. |
ZHAO L H, WEI X L, YANG L X, et al. Experimental study on the compacts of regenerative heat on the performance of the transcritical CO2 heat pump system[J]. Journal of Engineering Thermophysics, 2020, 41(1): 186-195. | |
20 | CHEN Y, GU J J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers[J]. International Journal of Refrigeration, 2005, 28(8): 1238-1249. |
21 | LU S X, LIANG R B, ZHANG J L, et al. Performance improvement of solar photovoltaic/thermal heat pump system in winter by employing vapor injection cycle[J]. Applied Thermal Engineering, 2019, 155: 135-146. |
22 | 何俊, 陶乐仁, 虞中旸. 降低制冷系统压缩机排气温度的方法研究[J]. 轻工机械, 2018, 36(2): 77-81. |
HE J, TAO L R, YU Z Y. Research on method of reducing compressor exhaust temperature in refrigeration system[J]. Light Industry Machinery, 2018, 36(2): 77-81. | |
23 | BAEK C, LEE E, KANG H, et al. Experimental study on the heating performance of a CO2 heat pump with gas injection[C]// International and Air Conditioning Conference at Purdue, 2008. |
24 | CHO H, BAEK C, PARK C, et al. Performance evaluation of a two-stage CO2 cycle with gas injection in the cooling mode operation[J]. International Journal of Refrigeration, 2009, 32(1): 40-46. |
25 | HEO J, JEONG M W, KIM Y. Effects of flash tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions[J]. International Journal of Refrigeration, 2010, 33(4): 848-855. |
26 | TELLO-OQUENDO F M, NAVARRO-PERIS E, GONZÁLVEZ-MACIÁ J. Comparison of the performance of a vapor-injection scroll compressor and a two-stage scroll compressor working with high pressure ratios[J]. Applied Thermal Engineering, 2019, 160: doi: 10.1016/j.applthermaleng.2019.114023. |
27 | WANG X, YU J L, XING M B. Performance analysis of a new ejector enhanced vapor injection heat pump cycle[J]. Energy Conversion and Management, 2015, 100: 242-248. |
28 | JUNG J, JEON Y, CHO W, et al. Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles[J]. Energy, 2020, 193: doi:10.1016/j.energy.2019.116751. |
29 | SUZUKI T, ISHII K. Air conditioning system for electric vehicle[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. |
30 | 何贤, 胡静, 钱程, 等. 纯电动汽车两种热泵空调系统的实验研究[J]. 制冷学报, 2018, 39(3): 79-84. |
HE X, HU J, QIAN C, et al. Experimental study on two kinds of heat-pump air-conditioning system used in pure electric vehicle[J]. Journal of Refrigeration, 2018, 39(3): 79-84. | |
31 | ITOH S,IRITANI K. Heat pump type refrigerant cycle system for electric vehicle air conditioner: US 6237351-B1[P]. 2001-05-29. |
32 | HIGUCHI Y, KOBAYASHI H, SHAN Z W, et al. Efficient heat pump system for PHEV/BEV[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. |
33 | 徐晓斌, 徐业飞, 张恒运, 等. 风冷电池模组热性能及成组效率的多目标优化[J]. 储能科学与技术, 2022, 11(2): 553-562. |
XU X B, XU Y F, ZHANG H Y, et al. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module[J]. Energy Storage Science and Technology, 2022, 11(2): 553-562. | |
34 | 胡志林, 张天强, 杨钫. 苹果电动汽车热管理技术研究[J]. 汽车文摘, 2021(1): 37-41. |
HU Z L, ZHANG T Q, YANG F. Research on thermal management technology of apple electric vehicle[J]. Automotive Digest, 2021(1): 37-41. |
[1] | Guanghua WU, Hongsheng LI, Fei LI, Bo CHEN, Shike ZHANG. Research on the prediction of carbon emissions in the whole life cycle of electric vehicles considering time correlation [J]. Energy Storage Science and Technology, 2022, 11(7): 2206-2212. |
[2] | Yan ZHANG, Wei HAN, Chuang SONG, Shuangyi YANG. Joint planning and operation optimization of photovoltaic-storage- charging integrated station containing electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1502-1511. |
[3] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[4] | Feiyue TAO, Huanran WANG, Ruixiong LI, Jing ZHAO, Gangqiang GE, Xin HE, Hao CHEN. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling [J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. |
[5] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[6] | Siyan LIU, Bihua HU. Model predictive control for bidirectional DC-DC converter of hydrogen fuel vehicles [J]. Energy Storage Science and Technology, 2021, 10(6): 2046-2052. |
[7] | Yi'nan ZHU, Taolin LÜ, Zhiyun ZHAO, Wen YANG. State of charge estimation of lithium ion battery based on parallel Kalman filter [J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. |
[8] | Xiaogang WU, Zhihao CUI, Yizhao SUN, Kun ZHANG, Jiuyu DU. Charging strategy and thermal management technology of power battery in high power charging process of electric vehicle [J]. Energy Storage Science and Technology, 2021, 10(6): 2218-2234. |
[9] | Dekun FU, Wenji SONG, Mingbiao CHEN, Ziping FENG. Techno-economic analysis of seasonal cold storage technology and its application in protected agriculture [J]. Energy Storage Science and Technology, 2021, 10(6): 2385-2391. |
[10] | Xu LIU, Xuqing YANG, Zhan LIU. A novel liquid energy storage system based on a carbon dioxide mixture [J]. Energy Storage Science and Technology, 2021, 10(5): 1806-1814. |
[11] | Yiran LI, Wen LI, Xueyu CHANG, Zhitao ZUO, Hui LI, Haisheng CHEN. Modeling of similar characteristics of turbo-expander in supercritical CO2 energy storage based on different working fluids [J]. Energy Storage Science and Technology, 2021, 10(5): 1815-1823. |
[12] | Lexuan LI, Yujie XU, Zhao YIN, Huan GUO, Xianrong ZHANG, Haisheng CHEN, Xuezhi ZHOU. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. |
[13] | Yingying WANG, Dekun FU, Mingbiao CHEN, Wenji SONG, Ziping FENG. Economy of ice source heat pump clean heating system in cold winter zone [J]. Energy Storage Science and Technology, 2021, 10(4): 1380-1387. |
[14] | Chao ZHANG, Kai KANG, Sheng LU, Xinyu QIN, Yanbo HUANG, Zhengtian LI. Economic scheduling of renewable energy storage plants with integrated thermal management of energy storage systems and battery life [J]. Energy Storage Science and Technology, 2021, 10(4): 1353-1363. |
[15] | Yanjuan LU, Youqin CHEN, Tinglong PAN. Community microgrid energy management considering electric vehicles and demand response [J]. Energy Storage Science and Technology, 2021, 10(2): 617-623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||