Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1767-1774.doi: 10.19799/j.cnki.2095-4239.2023.0942
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chenwei LI1,2(), Shiguo XU2, Haifeng YU1, Songmin YU1, Hao JIANG1()
Received:
2023-12-25
Revised:
2024-01-15
Online:
2024-06-28
Published:
2024-06-26
Contact:
Hao JIANG
E-mail:lichenwei0411@163.com;jianghao@ecust.edu.cn
CLC Number:
Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774.
1 | YU H, CAO Y, CHEN L, et al. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries[J].Nature Communications, 2021, 12(1): 4564. |
2 | LIU Y, MENG X, SHI Y, et al. Long-life quasi-solid-state anode-free batteries enabled by Li compensation coupled interface engineering[J]. Advanced Materials, 2023, 35(42): 2305386. |
3 | LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. |
4 | 冯晓晗, 孙杰, 何健豪, 魏义华, 周成冈, 孙睿敏. 磷酸铁锂正极材料改性研究进展[J]. 储能科学与技术, 2022, 11(2): 467-486. |
FENG X H, SUN J, HE J H, WEI Y H, ZHOU C G, SUN R M. Research progress in LiFePO4 cathode material modification[J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. | |
5 | ZHU H, WANG Z, CHEN L, et al. Strain engineering of Ni-rich cathode enables exceptional cyclability in pouch-type full cells[J]. Advanced Materials, 2022, 35(9): 2209357. |
6 | YU H, ZHU H, JIANG H, et al. Restraining the escape of lattice oxygen enables superior cyclic performance towards high-voltage ni-rich cathodes[J]. National Science Review, 2023, 10(1): nwac166H. |
7 | ZHANG H, HE X, CHEN Z, et al. Single-crystalline Ni-rich LiNixMnyCo1- x- yO2 cathode materials: A perspective[J]. Advanced Energy Materials, 2022, 12(45): 2202022. |
8 | ZENG X, ZHAN C, LU J, et al. Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries[J]. Chem, 2018, 4(4): 690-704. |
9 | 李淼, 于永利, 吴剑扬, 雷敏, 周恒辉. 高能量密度磷酸铁锂正极设计[J]. 储能科学与技术, 2023, 12(7): 2045-2058. |
LI M, YU Y L, WU J Y, LEI M, ZHOU H H. Design of high-energy-density LiFePO4 cathode materials[J]. Energy Storage Science and Technology, 2023, 12(7): 2045-2058. | |
10 | CHEN Y, ZENG G, ZHANG B, et al. From Li to Na: Exploratory analysis of Fe-based phosphates polyanion-type cathode materials by Mn substitution[J]. Small, 2023: 2303929. |
11 | ZHU C, WU Z, XIE J, et al. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode[J]. Journal of Materials Science & Technology, 2022, 125: 192-197. |
12 | LI S, ZHANG H, LIU Y, et al. Comprehensive understanding of structure transition in LiMnyFe1- yPO4 during delithiation/lithiation[J]. Advanced Functional Materials, 2023: 2310057. |
13 | YU M, LI J, NING X. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon[J]. Electrochimica. Acta, 2021, 368: 137597. |
14 | LI S, MENG X, YI Q, et al. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack[J]. Nano Energy, 2018, 52: 510-516. |
15 | YI T F, LI Y, FANG Z, et al. Improving the cycling stability and rate capability of LiMn0.5Fe0.5PO4/C nanorod as cathode materials by LiAlO2 modification[J]. Journal of Materiomics, 2020, 6(1): 33-44. |
16 | HUANG Q Y, WU Z, SU J, et al. Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries[J]. Ceramics International, 2016, 42(9): 11348-11354. |
17 | YANG L, DENG W, XU W, et al. Olivine LiMnxFe1- xPO4 cathode materials for lithium ion batteries: Restricted factors of rate performances[J]. Journal of Materials Chemistry A, 2021, 9(25): 14214-14232. |
18 | ZHANG X, HOU M, TAMIRATE AG, et al. Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries[J]. Journal of Power Sources, 2020, 448: 227438. |
19 | WANG B, XU B, LIU T, et al. Mesoporous carbon-coated lifepo4nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries[J]. Nanoscale, 2014, 6(2): 986-995. |
20 | LEI Z, WANG J, YANG J, et al. Nano-/microhierarchical-structured LiMn0.5Fe0.5PO4 cathode material for advanced lithium ion battery[J]. ACS Applied Materials & Interfaces, 2017, 10(50): 43552-43560. |
21 | QIN L, LIU Y, ZHU S, et al. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors[J]. Journal of Materials Chemistry A, 2021, 9(36): 20405-20416. |
22 | ZENG T T, GAO P, ZHOU Z, et al. Superior electronic/ionic kinetics of LiMn0.8Fe0.2PO4@C nanoparticles cathode by doping strategy toward enhanced Li-ion storage[J]. Energy Storage Materials, 2024, 65, 103125. |
23 | JIN H, ZHANG J, QIN L, et al. Dual modification of olivine LiMn0.5Fe0.5PO4 cathodes with accelerated kinetics for high-rate lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2023, 62(2), 1029-1034. |
24 | XU X, WANG T, BI Y, et al. Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment. Journal of Power Sources, 2017, 341: 175-182. |
25 | YANG L, XIA Y, QIN L, et al. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery[J]. Journal of Power Sources, 2016, 304: 293-300. |
26 | YU H, YANG Z, ZHU H, et al. Nitrogen-doped carbon stabilized LiMn0.5Fe0.5PO4/rGO cathode materials for high-power Li-ion batteries[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1935-1940. |
27 | LIU X, ZHANG Y, MENG Y, et al. Influence mechanism of Mg2+ doping on electrochemical properties of LiFePO4 cathode materials[J]. ACS Applied Energy Materials, 2022, 5(7): 8452-8459. |
28 | YANG L, WANG Y, WU J, et al. Facile synthesis of micro-spherical LiMn0.7Fe0.3PO4/C cathodes with advanced cycle life and rate performance for lithium-ion battery[J]. Ceramics International, 2017, 43(6): 4821-4830. |
29 | LI J, XIANG M, WANG Y, et al. Effects of adhesives on the electrochemical performance of monodisperse LiMn0.8Fe0.2PO4/C microspheres as cathode materials for high power lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(17): 7952-7960. |
30 | CAI L, HAN Q, ZHU H, et al. Grain-boundary engineering of Ni-rich cathodes prolongs the cycle life of Li-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 8352-8358. |
31 | LIANG W, JIN F, ZHAO Y, et al. Synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 materials for Li-ion batteries by microfluidic technology[J]. Chemical Engineering Journal, 2023, 464: 142656. |
32 | LIANG L, LI X, SU M, et al. Chemomechanically stable small single-crystal mo-doped LiNi0.6Co0.2Mn0.2O2 cathodes for practical 4.5 V-class pouch-type Li-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(11): e202216155. |
[1] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[2] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[3] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[4] | Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495. |
[5] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[6] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[7] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[8] | Jiamu YANG, Yuxin CHEN, Cheng LIAN, Zhi XU, Honglai LIU. Flow field analysis and structural optimization of coating die with electrode slurry [J]. Energy Storage Science and Technology, 2024, 13(4): 1109-1117. |
[9] | Mingming SUN. Patent analysis of organic-inorganic composite solid-state electrolytes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1096-1105. |
[10] | Chengjie XU, Yulin HUANG, Zhongfeiyu LIN, Zhiming LIN, Chenxi FANG, Weijun ZHANG, Zhigao HUANG, Jiaxin LI. Macroscopic fabrication of nano-silicon via sand-milling and investigation of lithium storage performance in carbon fiber composite anodes [J]. Energy Storage Science and Technology, 2024, 13(1): 1-11. |
[11] | Yi ZHANG, Xiaoyu GE, Zhen LI, Yunhui HUANG. Progress on acoustic and optical sensing technologies for lithium rechargeable batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 167-177. |
[12] | Xiaowei HUANG, Shaopeng LI, Xiaogang ZHANG. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. |
[13] | Xin GAO, Ruogu WANG, Wenjing GAO, Zejun DENG, Ruiqi LIANG, Kun YANG. Consistency evaluation method of battery pack in energy storage power station based on running data [J]. Energy Storage Science and Technology, 2023, 12(9): 2937-2945. |
[14] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[15] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||