Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 755-769.doi: 10.19799/j.cnki.2095-4239.2024.0880
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jianru ZHANG1(), Qiyu WANG1(
), Yinghui JI1, Xin GAO2, Xiqian YU1, Hong LI1
Received:
2024-09-19
Revised:
2024-10-26
Online:
2025-02-28
Published:
2025-03-18
Contact:
Qiyu WANG
E-mail:momsnow@foxmail.com;qywang10@iphy.ac.cn
CLC Number:
Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 755-769.
Table 1
Common surface spectroscopy characterization techniques and their characteristic parameters"
表面谱学表征技术 | EDS (SEM) | XPS | AES | (TOF) SIMS |
---|---|---|---|---|
全称 | Energy dispersive x-ray spectroscopy | X-ray photoelectron spectroscopy | Auger electron spectroscopy | (Time of flight)Secondary ion mass spectroscopy |
中文名称 | 能量色散X射线光谱仪 | X射线光电子能谱 | 俄歇电子能谱 | (飞行时间)二次离子质谱 |
入射源 | 电子 | X射线 | 电子 | 离子(一般为Bi源) |
检测信号 | X射线 | 电子 | 电子 | 离子(二次离子) |
最小分析区域(直径) | 约1 μm | >10 μm | 约20 nm | 约70 nm |
检测深度(最小) | 约1 μm | 约6 nm | ≤5 nm | <1 nm |
深度剖析 | 需匹配FIB | √(Ar 溅射) | √(Ar 溅射) | √(Ar,O,Cs,GCIB等多种溅射) |
二维成像 | √ | × | √ | √ |
三维成像 | × | × | × | √ |
最低检测限 | 约0.5% | 约0.05% | 约0.1% | 约0.0001% |
检测元素 | B~U | Li~U | Li~U | H~U |
样品类型 | 导体(可喷金) | 导体、绝缘体 | 导体 | 固体 |
定量分析 | 一般 | 优 | 半定量 | 半定量 |
Fig. 4
AES analysis of Li2MnO3 crystals after SO2 adsorption: (a) scanned SEM image of the surface of the Li2MnO3 crystal, the analysis area is indicated by a red plus sign; (b) the corresponding Auger spectra; (c) the peak energy of O in different cathode materials as a function of voltage, and the values obtained from the reference spectrum[25, 27]"
Fig. 9
(a) Schematic diagram of the preparation of cross-sectional in-situ thin film all-solid-state lithium battery by ion beam cutting technology; (b) SEM image (cross-section) of polished longitudinal sample: (b1) first charge and (b2) first discharge; Oblique (60°) SEM images and SAM superimpositions of Li KVV, Co LMM, and Pt MNN transitions, charging c) and discharging d), respectively; (c) Comparison of the Co and Li peak fits for the first discharge and the first discharge [refer to Figure (b)] for the three feature points: (c1) point 1, (c2) point 2, (c3) point 3. O/Co and O/Li ratios were quantified using absolute intensity (fitting reference Co, CoO, Co3O4 and Li2O standard spectra)[37]"
1 | 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)——全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. DOI: 10.3969/j.issn.2095-4239.2014.04.012. |
ZHANG S, WANG S F, LING S G, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. DOI: 10.3969/j.issn.2095-4239.2014.04.012. | |
2 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2021, 37(11): 48-61. DOI: 10.3866/PKU.WHXB202007070. |
WANG H, AN H W, SHAN H M, et al. Research progress on interfaces of all-solid-state batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 48-61. DOI: 10.3866/PKU.WHXB 202007070. | |
3 | HUANG Y, CHEN B, DUAN J, et al. Graphitic carbon nitride (g-C3 N4): An interface enabler for solid-state lithium metal batteries[J]. Angewandte Chemie (International Ed), 2020, 59(9): 3699-3704. DOI:10.1002/anie.201914417. |
4 | ZHANG D C, ZHANG L, YANG K, et al. Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36886-36896. DOI:10.1021/acsami.7b12186. |
5 | LIN M X, BEN L B, SUN Y, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303. DOI:10.1021/cm503972a. |
6 | FAN X M, HU G R, ZHANG B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries[J]. Nano Energy, 2020, 70: 104450. DOI:10.1016/j.nanoen.2020.104450. |
7 | TIAN F, BEN L B, YU H L, et al. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: 107222. DOI:10.1016/j.nanoen. 2022.107222. |
8 | 赵磊. 表面分析技术在半导体材料中的应用[J]. 电子技术与软件工程, 2019(16): 115-116. |
ZHAO L. Application of surface analysis technology in semiconductor materials[J]. Electronic Technology & Software Engineering, 2019(16): 115-116. | |
9 | 郭汉生. 消除俄歇电子能谱实验中氧化物表面荷电的新方法[J]. 材料研究学报, 2000, 14(B01): 53-57. |
GUO H S. A new method for compensation of the charging of oxides during aes[J]. Chinese Journal of Materials Research, 2000, 14(B01): 53-57. | |
10 | SEAH M P, DENCH W A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids[J]. Surface and Interface Analysis, 1979, 1(1): 2-11. DOI:10.1002/sia.740010103. |
11 | 张录平, 李晖, 刘亚平. 俄歇电子能谱仪在材料分析中的应用[J]. 分析仪器, 2009(4): 14-17. DOI: 10.3969/j.issn.1001-232X.2009.04.003. |
ZHANG L P, LI H, LIU Y P. Applications of Auger electron spectrometer in material analysis[J]. Analytical Instrumentation, 2009(4): 14-17. DOI: 10.3969/j.issn.1001-232X.2009.04.003. | |
12 | 刘江禄. 俄歇电子能谱及其在半导体中的应用[J]. 微电子学, 1980, 10(6): 39-50. |
LIU J L. Auger electron spectroscopy and its application in semiconductors[J]. Microelectronics, 1980, 10(6): 39-50. | |
13 | 王钤, 张强基, 华中一. 俄歇定量分析中确定背散射因子的一种新方法[J]. 物理学报, 1986, 35(7): 914-921. |
WANG Q, ZHANG Q J, HUA Z Y. A new method to determine backscattering factors for quantitative auger analysis[J]. Acta Physica Sinica, 1986, 35(7): 914-921. | |
14 | MORGEN P, HENRIKSEN B, KYRPING D. Ion etching methods for depth profiling of complex three-dimensional samples in combination with scanning Auger electron microscopy[J]. Vacuum, 2008, 82(9): 922-929. DOI:10.1016/j.vacuum. 2007.12.009. |
15 | 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2): 3-24. |
KANG H L, JIAN W, HAN Y S, et al. Progress on the quantification of sputter depth profiling and its application[J]. Journal of Shantou University (Natural Science Edition), 2016, 31(2): 3-24. | |
16 | 吴正龙, 姚振钰, 刘志凯, 等. 图形衬底上硅区双离子束选择淀积Co研究[J]. 半导体学报, 1999, 20(11): 1010-1014. |
WU Z L, YAO Z Y, LIU Z K, et al. Selective deposition of cobalt on patterned substrate by dual ion beams techniques[J]. Chinese Journal of Semiconductors, 1999, 20(11): 1010-1014. | |
17 | 俄歇电子能谱分析[J]. 金属热处理, 2023, 48(10): 101. |
Auger electron spectroscopy[J]. Heat Treatment of Metals, 2023, 48(10): 101. | |
18 | JOHANSEN M, XU J, TAM P L, et al. Lithiated carbon fibres for structural batteries characterised with Auger electron spectroscopy[J]. Applied Surface Science, 2023, 627: 157323. DOI:10.1016/j.apsusc.2023.157323. |
19 | BRIGGS D, RIVIERE J C. Parctical surface analysis by Auger and X-ray photoelectron spectroscopy[M]. Chichester, New York: Wiley, 1983. |
20 | 徐富春. 微纳尺度表征的俄歇电子能谱新技术[D]. 厦门: 厦门大学, 2009. |
XU F C. New technology of auger electron spectroscopy characterized by micro-nano scale[D]. Xiamen: Xiamen University, 2009. | |
21 | SHIRLEY D A. High-resolution X-ray photoemission spectrum of the valence bands of gold[J]. Physical Review B, 1972, 5(12): 4709-4714. DOI:10.1103/PhysRevB.5.4709. |
22 | 龚海宁, 申华, 黄惠忠, 等. XPS中Tougaard法本底扣除初探[J]. 物理化学学报, 2002, 18(4): 326-331. DOI: 10.3866/PKU.WHXB 20020408. |
GONG H N, SHEN H, HUANG H Z, et al. Preliminary exploration of touggard's method used for the background subtraction in XPS[J]. Acta Physico-chimica Sinica, 2002, 18(4): 326-331. DOI: 10.3866/PKU.WHXB20020408. | |
23 | JANSSON C, TOUGAARD S, BEAMSON B D, et al. Surface and interface analysis[J]. 1995, 23: 484. |
24 | ZHU Y F, CAO L L. Auger chemical shift analysis and its applications to the identification of interface species in thin films[J]. Applied Surface Science, 1998, 133(3): 213-220. DOI:10.1016/S0169-4332(98)00206-2. |
25 | QUESNE-TURIN A, FLAHAUT D, CROGUENNEC L, et al. Surface reactivity of Li2MnO3: First-principles and experimental study[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44222-44230. DOI:10.1021/acsami.7b14826. |
26 | TANG C Y, MA Y H, HAASCH R T, et al. Insights into solid-electrolyte interphase induced Li-ion degradation from in situ auger electron spectroscopy[J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6226-6230. DOI:10.1021/acs.jpclett.7b02847. |
27 | TANG C Y, FENG L, HAASCH R T, et al. Surface redox on Li [Ni1/3Mn1/3Co1/3]O2 characterized by in situ X-ray photoelectron spectroscopy and in situ Auger electron spectroscopy[J]. Electrochimica Acta, 2018, 277: 197-204. DOI:10.1016/j.electacta. 2018.04.199. |
28 | ISHIDA N, FUKUMITSU H, KIMURA H, et al. Direct mapping of Li distribution in electrochemically lithiated graphite anodes using scanning Auger electron microscopy[J]. Journal of Power Sources, 2014, 248: 1118-1122. DOI:10.1016/j.jpowsour. 2013.09.121. |
29 | HOFFMANN M, ZIER M, OSWALD S, et al. Challenges for lithium species identification in complementary Auger and X-ray photoelectron spectroscopy[J]. Journal of Power Sources, 2015, 288: 434-440. DOI:10.1016/j.jpowsour.2015.04.144. |
30 | ISHIDA N, FUJITA D. Chemical-state imaging of Li using scanning Auger electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 186: 39-43. DOI:10.1016/j.elspec.2013.03.001. |
31 | WINKLER V, HANEMANN T, BRUNS M. Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition[J]. Surface and Interface Analysis, 2017, 49(5): 361-369. DOI:10.1002/sia.6139. |
32 | JUNG E Y, PARK C S, LEE J C, et al. Experimental study on solid electrolyte interphase of graphite electrode in Li-ion battery by surface analysis technique[J]. Molecular Crystals and Liquid Crystals, 2018, 663(1): 158-167. DOI:10.1080/15421406.2018.1470709. |
33 | HA Y, MARTIN T R, FRISCO S, et al. Evaluating the effect of electrolyte additive functionalities on NMC622/Si cell performance[J]. Journal of the Electrochemical Society, 2022, 169(7): 070515. DOI:10.1149/1945-7111/ac7e75. |
34 | DAVIS A L, GARCIA-MENDEZ R, WOOD K N, et al. Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: operando analysis and ALD interlayer effects[J]. Journal of Materials Chemistry A, 2020, 8(13): 6291-6302. DOI:10.1039/C9TA11508K. |
35 | TANG C Y, HAASCH R T, DILLON S J. In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling[J]. Chemical Communications, 2016, 52(90): 13257-13260. DOI:10.1039/c6cc08176b. |
36 | TANG C Y, LEUNG K, HAASCH R T, et al. LiMn2O4 surface chemistry evolution during cycling revealed by in situ auger electron spectroscopy and X-ray photoelectron spectroscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33968-33978. DOI:10.1021/acsami.7b10442. |
37 | UHART A, LEDEUIL J B, PECQUENARD B, et al. Nanoscale chemical characterization of solid-state microbattery stacks by means of auger spectroscopy and ion-milling cross section preparation[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33238-33249. DOI:10.1021/acsami.7b07270. |
[1] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
[2] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[3] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. |
[4] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[5] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[6] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[7] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[8] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[9] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[10] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[11] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[12] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[13] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
[14] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[15] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||