Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 358-369.doi: 10.19799/j.cnki.2095-4239.2024.0526
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jianxuan LI(), Chen LIN, Zhongkai ZHOU(
)
Received:
2024-06-12
Revised:
2024-06-26
Online:
2025-01-28
Published:
2025-02-25
Contact:
Zhongkai ZHOU
E-mail:18946215411@163.com;zzkai@qdu.edu.cn
CLC Number:
Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 358-369.
Table 4
The comparison of training time and estimation errors of T21 and T22 at different algorithms"
Cell | Criteria | LSTM | BiLSTM | PSO-BiLSTM | SABO-BiLSTM |
---|---|---|---|---|---|
T21 | MAE/% | 0.699 | 0.341 | 0.091 | 0.036 |
RMSE/% | 1.549 | 0.439 | 0.163 | 0.054 | |
MAPE/% | 0.794 | 0.395 | 0.104 | 0.043 | |
Training time/s | 1.660 | 9.753 | 281.812 | 103.183 | |
T22 | MAE/% | 0.659 | 0.562 | 0.110 | 0.045 |
RMSE/% | 1.465 | 0.673 | 0.192 | 0.069 | |
MAPE/% | 0.741 | 0.631 | 0.129 | 0.053 | |
Training time/s | 1.196 | 8.061 | 330.265 | 109.753 |
Table 5
The comparison of training time and estimation errors of B005 and B007 at different algorithms"
Cell | Criteria | LSTM | BiLSTM | PSO-BiLSTM | SABO-BiLSTM |
---|---|---|---|---|---|
B005 | MAE/% | 1.816 | 0.900 | 0.636 | 0.207 |
RMSE/% | 2.502 | 1.242 | 0.938 | 0.278 | |
MAPE/% | 2.282 | 1.172 | 0.748 | 0.259 | |
Training time/s | 0.690 | 5.326 | 168.793 | 64.482 | |
B007 | MAE/% | 1.957 | 0.842 | 0.663 | 0.205 |
RMSE/% | 2.717 | 1.019 | 0.965 | 0.267 | |
MAPE/% | 2.331 | 0.975 | 0.749 | 0.230 | |
Training time/s | 0.741 | 5.131 | 182.526 | 59.685 |
1 | JI D, GAN H. Effects of providing total cost of ownership information on below-40 young consumers' intent to purchase an electric vehicle: A case study in China[J]. Energy Policy, 2022, 165: 112954. |
2 | LIU K. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. |
3 | 霍丽萍, 栾伟玲, 庄子贤 . 锂离子电池储能安全技术的发展态势——从全球专利数据分析我国的发展现状[J]. 储能科学与技术, 2022, 11(8): 2671-2680. |
HUO L P, LUAN W L, ZHUANG Z X. Development trend of energy storage safety technology for lithium-ion batteries analysis of global patent data and china's development status [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. | |
4 | TENG J H, CHEN R J, LEE P T, et al. Accurate and efficient SOH estimation for retired batteries[J]. Energies, 2023, 16(3): 1240. |
5 | XU Z, WANG J, LUND P D, et al. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model[J]. Energy, 2022, 240: 122815. |
6 | NI Y L, XU J N, ZHU C B, et al. Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model[J]. Applied Energy, 2022, 305: 117922. |
7 | LI X, JU L, GENG G, et al. Data-driven state-of-health estimation for lithium-ion battery based on aging features[J]. Energy, 2023, 274: 127378. |
8 | YAN M A, YANG C, FAN Z, et al. Remaining useful life prediction of power battery based on extend h_∞ particle filter algorithm[J]. Journal of Mechanical Engineering, 2019, 55(20): 36-43. |
9 | CAI Y, CHEN W, SU Y, et al. Review of remaining useful life prediction for lithium-ion batteries[J]. Journal of Power Sources, 2021, 45: 678-682. |
10 | HU X, CHE Y, LIN X, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2020, 7(2): 382 -398. |
11 | XU Z, WANG J, LUND P D, et al. Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data[J]. Energy, 2021, 225: 120160. |
12 | WENG C, CUI Y, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44. |
13 | JENU S, HENTUNEN A, HAAVISTO J, et al. State of health estimation of cycle aged large format lithium-ion cells based on partial charging[J]. Journal of Energy Storage, 2022, 46: 103855. |
14 | LIN Z, HU H, LIU W, et al. State of health estimation of lithium-ion batteries based on remaining area capacity[J]. Journal of Energy Storage, 2023, 63: 107078. |
15 | ZHU G R, KONG C, WANG J V, et al. A fractional-order model of lithium-ion battery considering polarization in electrolyte and thermal effect[J]. Electrochimica Acta, 2023, 438: 141461. DOI: 10.1016/j.electacta.2022.141461. |
16 | LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium-ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. |
17 | SCHMIDT A P, BITZER M, IMRE Á W, et al. Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries[J]. Journal of Power Sources, 2010, 195(22): 7634-7638. |
18 | FU H J, LIU Z G, CUI K X, et al. Physics-informed neural network for spacecraft lithium-ion battery modeling and health diagnosis[J]. IEEE/ASME Transactions on Mechatronics, 2024. DOI: 10.1109/TMECH.2023.3348519. |
19 | 刘伟霞, 田勋, 肖家勇, 等 . 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694. |
LIU W X, TIAN X, XIAO J Y, et al. SOH and remaining life prediction of lithium battery based on hybrid model and LSTM[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. | |
20 | 王义, 刘欣, 高德欣 . 基于BiLSTM神经网络的锂电池SOH估计与RUL预测[J].电子测量技术, 2021, 44(20): 1-5. |
WANG Y, LIU X, GAO D X. SOH estimation and RUL prediction of lithium battery based on BiLSTM neural network[J]. Electronic Measurement Technology, 2021, 44(20): 1-5. | |
21 | ZHANG Y, XIN Y Q, Qian Q Z. PSO-optimised BiLSTM-attention network for lithium battery health state assessment[J]. Control Engineering, 2022, 29(2): 7. |
22 | TROJOVSKÝ P, DEHGHANI M. Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems[J]. Biomimetics, 2023, 8(2): 149. |
23 | WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3948. |
24 | BLOOM I, COLE B W, SOHN J J, et al. An accelerated calendar and cycle life study of Li-ion cells[J]. Journal of Power Sources, 2001, 101(2): 238-247. |
25 | 韩雪冰 . 车用锂离子电池机理模型与状态估计研究[D]. 北京:清华大学, 2016. |
HAN X B. Research on mechanism model and state estimation of automotive lithium-ion batteries [D]. Beijing: Tsinghua University, 2016. | |
26 | 吴欢欢, 代娟, 朱振东, 等 . 锂离子电池负极满嵌锂石墨的热稳定性[J]. 电池, 2020, 50(5): 446-449. |
WU H H, DAI J, ZHU Z D, et al. Thermal stability of lithium-ion batteries anode with fully lithiated graphite[J]. Battery Bimonthly, 2020, 50(5): 446-449. | |
27 | 米成 . 锂离子电池界面反应活化能应用研究[J]. 湖南有色金属, 2023, 39(1): 55-58. |
MI C. Application research on activation energy of interface reaction in lithium-ion batteries [J]. Hunan Nonferrous Metals, 2023, 39(1): 55-58. | |
28 | 毛百海, 覃吴, 肖显斌, 等 . 基于LSTM&GRU-Attention多联合模型的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3519-3527. |
MAO B H, QIN W, XIAO X B, et al. Based on LSTM&GRU-attention multi-modal model, state-of-health estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527. | |
29 | SUN S, SUN J, WANG Z, et al. Prediction of battery soh by cnn-bilstm network fused with attention mechanism[J]. Energies, 2022, 15(12): 4428. |
[1] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[2] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[3] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[4] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[5] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[6] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[7] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[8] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[9] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[10] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
[11] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[12] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[13] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[14] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[15] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||