Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 648-658.doi: 10.19799/j.cnki.2095-4239.2024.0751
• Energy Storage System and Engineering • Previous Articles Next Articles
Yuehao CHEN1(), Sha CHEN1, Huilan CHEN1, Xiaoqin SUN1(
), Yongqiang LUO2
Received:
2024-08-12
Revised:
2024-08-20
Online:
2025-02-28
Published:
2025-03-18
Contact:
Xiaoqin SUN
E-mail:1136367209@qq.com;xiaoqinsun@csust.edu.com
CLC Number:
Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs[J]. Energy Storage Science and Technology, 2025, 14(2): 648-658.
1 | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9. DOI: 10.13334/j.0258-8013.pcsee.162555. |
SHU Y B, ZHANG Z G, GUO J B, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9. DOI: 10.13334/j.0258-8013.pcsee. 162555. | |
2 | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. DOI: 10.16418/j.issn.1000-3045.20220311001. |
ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. DOI: 10.16418/j.issn.1000-3045.20220311001. | |
3 | IANNICIELLO L, BIWOLÉ P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials[J]. Journal of Power Sources, 2018, 378: 383-403. DOI:10.1016/j.jpowsour.2017.12.071. |
4 | GIULIANO M R, PRASAD A K, ADVANI S G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216: 345-352. DOI:10.1016/j.jpowsour.2012.05.074. |
5 | FAN L W, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. DOI:10.1016/j.jpowsour. 2013. 03.050. |
6 | 凌子夜, 方晓明, 汪双凤, 等. 相变材料用于锂离子电池热管理系统的研究进展[J]. 储能科学与技术, 2013, 2(5): 451-459. DOI: 10.3969/j.issn.2095-4239.2013.05.002. |
LING Z Y, FANG X M, WANG S F, et al. Thermal management of lithium-ion batteries using phase change materials[J]. Energy Storage Science and Technology, 2013, 2(5): 451-459. DOI: 10.3969/j.issn.2095-4239.2013.05.002. | |
7 | YANG Y, CHEN L, TONG K, et al. Thermal-electrical characteristics of lithium-ion battery module in series connection with a hybrid cooling[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122309. DOI:10.1016/j.ijheatmasstransfer. 2021.122309. |
8 | 江毅, 李超恩, 温小栋, 等. 基于浸没式液冷的锂电池热管理研究进展[J]. 暖通空调, 2024, 54(2): 1-10. DOI: 10.19991/j.hvac1971.2024.02.01. |
JIANG Y, LI C E, WEN X D, et al. Recent advancements on thermal management of lithium batteries based on immersion liquid cooling[J]. Heating Ventilating & Air Conditioning, 2024, 54(2): 1-10. DOI: 10.19991/j.hvac1971.2024.02.01. | |
9 | SURESH PATIL M, SEO J H, LEE M Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021, 229: 113715. DOI:10.1016/j.enconman.2020.113715. |
10 | TAN X J, LYU P X, FAN Y Q, et al. Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion battery pack in hydrofluoroether[J]. Applied Thermal Engineering, 2021, 196: 117279. DOI:10.1016/j.applthermaleng.2021.117279. |
11 | LE Q, SHI Q L, LIU Q, et al. Numerical investigation on manifold immersion cooling scheme for lithium ion battery thermal management application[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122750. DOI:10.1016/j.ijheatmasstransfer. 2022.122750. |
12 | WANG H T, TAO T, XU J, et al. Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J]. Journal of Energy Storage, 2022, 46: 103835. DOI:10.1016/j.est.2021.103835. |
13 | QIU D L, CAO L Q, WANG Q D, et al. Experimental and numerical study of 3D stacked dies under forced air cooling and water immersion cooling[J]. Microelectronics Reliability, 2017, 74: 34-43. DOI:10.1016/j.microrel.2017.02.016. |
14 | LUO M Y, CAO J H, LIU N H, et al. Experimental and simulative investigations on a water immersion cooling system for cylindrical battery cells[J]. Frontiers in Energy Research, 2022, 10: 803882. DOI:10.3389/fenrg.2022.803882. |
15 | JITHIN K V, RAJESH P K. Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122608. DOI:10.1016/j.ijheatmasstransfer.2022.122608. |
16 | LIU J H, FAN Y N, XIE Q M. Feasibility study of a novel oil-immersed battery cooling system: Experiments and theoretical analysis[J]. Applied Thermal Engineering, 2022, 208: 118251. DOI:10.1016/j.applthermaleng.2022.118251. |
17 | 吴成会, 梁才航. 基于浸没式冷却的锂离子电池实验研究[J]. 电源技术, 2023, 47(11): 1409-1413. DOI: 10.3969/j.issn.1002-087X. 2023.11.006. |
WU C H, LIANG C H. Experimental study of lithium-ion battery based on immersion cooling[J]. Chinese Journal of Power Sources, 2023, 47(11): 1409-1413. DOI: 10.3969/j.issn.1002-087X.2023.11.006. | |
18 | DUBEY P, PULUGUNDLA G, SROUJI A K. Direct comparison of immersion and cold-plate based cooling for automotive Li-ion battery modules[J]. Energies, 2021, 14(5): 1259. DOI:10.3390/en14051259. |
19 | 郭骞. 新能源电站中储能电池技术的对比与发展前景预测[J]. 太阳能, 2021(12): 5-10. DOI: 10.19911/j.1003-0417.tyn20210318.05. |
GUO Q. Renewable energy bess system technology comparison and prediction[J]. Solar Energy, 2021(12): 5-10. DOI: 10.19911/j.1003-0417.tyn20210318.05. | |
20 | 朱信龙, 王均毅, 潘加爽, 等. 集装箱储能系统热管理系统的现状及发展[J]. 储能科学与技术, 2022, 11(1): 107-118. DOI: 10.19799/j.cnki.2095-4239.2021.0381. |
ZHU X L, WANG J Y, PAN J S, et al. Present situation and development of thermal management system for battery energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. DOI: 10.19799/j.cnki.2095-4239.2021.0381. | |
21 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 132(1): 5-12. DOI:10.1149/1.2113792. |
22 | PESARAN A A, KEYSER M, BURCH S. An approach for designing thermal management systems for electric and hybrid vehicle battery packs [R]. Office of Scientific & Technical Information Technical Reports, 1999. |
23 | 刘周斌, 朱涛, 姜巍, 等. 储能锂离子电池包冷却系统的数值模拟与结构优化[J]. 中国电力, 2023, 56(10): 202-210. DOI: 10.11930/j.issn.1004-9649.202306114. |
LIU Z B, ZHU T, JIANG W, et al. Simulation analysis and structure optimization of cooling system for energy storage lithium-ion battery pack[J]. Electric Power, 2023, 56(10): 202-210. DOI: 10.11930/j.issn.1004-9649.202306114. | |
24 | 宋来丰, 梅文昕, 贾壮壮, 等. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349. |
SONG L F, MEI W X, JIA Z Z, et al. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349. | |
25 | 唐康, 刘振祥, 唐丹, 等. 分布式电池系统热平衡控制设计[J]. 电池, 2024, 54(1): 41-46. DOI: 10.19535/j.1001-1579.2024.01.009. |
TANG K, LIU Z X, TANG D, et al. Design of thermal balancing control for distributed battery system[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 41-46. DOI: 10.19535/j.1001-1579.2024.01.009. | |
26 | WANG Z P, ZHAO R J, WANG S Z, et al. Heat transfer characteristics and influencing factors of immersion coupled direct cooling for battery thermal management[J]. Journal of Energy Storage, 2023, 62: 106821. DOI:10.1016/j.est. 2023. 106821. |
27 | TRIMBAKE A, SINGH C P, KRISHNAN S. Mineral oil immersion cooling of lithium-ion batteries: An experimental investigation[J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(2): 021007. DOI:10.1115/1.4052094. |
28 | 姜贵文. 高导热复合相变材料的制备与动力电池热管理应用研究[D]. 南昌: 南昌大学, 2017. |
JIANG G W. Preparation of composite phase change materials with high thermal conductivity and application research on thermal management of power battery[D]. Nanchang: Nanchang University, 2017. | |
29 | 曾少鸿, 吴伟雄, 刘吉臻, 等. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. |
ZENG S H, WU W X, LIU J Z, et al. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. |
[1] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[2] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
[3] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[4] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[5] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[6] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[7] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
[8] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[9] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[10] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[11] | Hongchen LI, Baoming CHEN, Pengzhen ZHU, Chonglong ZHONG, Chaofu MA. Study on phase-change heat transfer characteristics of anisotropic TPMS skeleton composite materials [J]. Energy Storage Science and Technology, 2024, 13(12): 4319-4329. |
[12] | Weijie CHAI, Xijia ZHAO, Shihao CAO. Experimental and numerical studies on the melting heat storage of metal honeycomb-enhanced phase-change materials [J]. Energy Storage Science and Technology, 2024, 13(12): 4357-4367. |
[13] | Liming WANG, Mengqi WANG, Yimo LUO, Gesang YANG, Yuanyuan WANG, Lexiao WANG. Optimum design method for zeolite heat storage reactors [J]. Energy Storage Science and Technology, 2024, 13(12): 4272-4281. |
[14] | Zhenkun XIAO, Zhen CHEN, Zhuang YANG, Hongxun QI, Jun YAN. Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4330-4338. |
[15] | Lexiao WANG, Yimo LUO, Liming WANG, Gesang YANG. Research on the performance of thermal storage reactor with salt hydrates under multifactor interactions [J]. Energy Storage Science and Technology, 2024, 13(12): 4396-4405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||