Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4319-4329.doi: 10.19799/j.cnki.2095-4239.2024.0554
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Hongchen LI(), Baoming CHEN(), Pengzhen ZHU, Chonglong ZHONG, Chaofu MA
Received:
2024-06-19
Revised:
2024-07-23
Online:
2024-12-28
Published:
2024-12-23
Contact:
Baoming CHEN
E-mail:2301377915@qq.com;chenbm@sdjzu.edu.cn
CLC Number:
Hongchen LI, Baoming CHEN, Pengzhen ZHU, Chonglong ZHONG, Chaofu MA. Study on phase-change heat transfer characteristics of anisotropic TPMS skeleton composite materials[J]. Energy Storage Science and Technology, 2024, 13(12): 4319-4329.
1 | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239. 2021.0538. |
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239.2021.0538. | |
2 | ORÓ E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. DOI: 10.1016/j.apenergy.2012.03.058. |
3 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10. DOI: 10.11868/j.issn.1001-4381. 2018. 000876. |
CHEN Y, JIANG Q H, XIN J W, et al. Research status and application of phase change materials[J]. Journal of Materials Engineering, 2019, 47(7): 1-10. DOI: 10.11868/j.issn.1001-4381. 2018.000876. | |
4 | LI Z, WU Z G. Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix[J]. Solar Energy, 2014, 99: 172-184. DOI: 10.1016/j.solener.2013.11.017. |
5 | HOSSEINI A, BANAKAR A, GORJIAN S, et al. Experimental and numerical investigation of the melting behavior of a phase change material in a horizontal latent heat accumulator with longitudinal and annular fins[J]. Journal of Energy Storage, 2024, 82: 110563. DOI: 10.1016/j.est.2024.110563. |
6 | BIAN Z, HOU F, CHEN J Q, et al. Numerical analysis on the effect of graded porosity in closed-cell metal foams/PCM composites[J]. Case Studies in Thermal Engineering, 2024, 55: 104145. DOI: 10.1016/j.csite.2024.104145. |
7 | PENG W, SADAGHIANI O K. Thermal function improvement of phase-change material (PCM) using alumina nanoparticles in a circular-rectangular cavity using Lattice Boltzmann method[J]. Journal of Energy Storage, 2021, 37: 102493. DOI: 10.1016/j.est.2021.102493. |
8 | GHAHREMANNEZHAD A, XU H J, SALIMPOUR M R, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams[J]. Applied Thermal Engineering, 2020, 179: 115731. DOI: 10.1016/j. applthermaleng. 2020.115731. |
9 | FENG D L, NAN J F, FENG Y H, et al. Numerical investigation on improving the heat storage and transfer performance of ceramic/D-mannitol composite phase change materials by bionic graded pores and nanoparticle additives[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121748. DOI: 10.1016/j. ijheatmasstransfer. 2021.121748. |
10 | FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. DOI: 10.1088/2631-7990/ac5be6. |
11 | ZHANG J F, CHEN X H, SUN Y X, et al. Design of a biomimetic graded TPMS scaffold with quantitatively adjustable pore size[J]. Materials & Design, 2022, 218: 110665. DOI: 10.1016/j. matdes. 2022.110665. |
12 | ZHANG X Y, YAN X C, FANG G, et al. Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface[J]. Additive Manufacturing, 2020, 32: 101015. DOI: 10.1016/j.addma.2019.101015. |
13 | XU D, LIN M. Design controllable TPMS structures for solar thermal applications: A pore-scale vs. volume-averaged modeling approach[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123625. DOI: 10.1016/j.ijheatmasstransfer.2022.123625. |
14 | QURESHI Z A, ADDIN BURHAN AL-OMARI S, ELNAJJAR E, et al. On the effect of porosity and functional grading of 3D printable triply periodic minimal surface (TPMS) based architected lattices embedded with a phase change material[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122111. DOI: 10.1016/j.ijheatmasstransfer.2021.122111. |
15 | BROUMAND M, SON J, PYO Y, et al. TPMS-based transpiration cooling for film cooling enhancement[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125824. DOI: 10.1016/j.ijheatmasstransfer.2024.125824. |
16 | ZHANG T, ZHANG K F, LIU F, et al. Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study[J]. Applied Energy, 2024, 358: 122630. DOI: 10.1016/j.apenergy.2024.122630. |
17 | WANG J H, CHEN K, ZENG M, et al. Investigation on flow and heat transfer in various channels based on triply periodic minimal surfaces (TPMS)[J]. Energy Conversion and Management, 2023, 283: 116955. DOI: 10.1016/j.enconman.2023.116955. |
18 | 随立言. 基于LBM含复杂骨架固液相变传热特性研究[D]. 济南: 山东建筑大学, 2023. DOI: 10.27273/d.cnki.gsajc.2023.000168. |
SUI L Y. Study on heat transfer characteristics of solid-liquid phase change with complex skeleton based on LBM[D]. Jinan: Shandong Jianzhu University, 2023. DOI: 10.27273/d.cnki. gsajc. 2023.000168. | |
19 | LIU Z Q, GONG H, GAO J Z, et al. Bio-inspired design, mechanical and mass-transport characterizations of orthotropic TPMS-based scaffold[J]. Composite Structures, 2023, 321: 117256. DOI: 10.1016/j.compstruct.2023.117256. |
20 | CHEN B M, SONG L Q, GAO K K, et al. Two zone model for mushy region of solid-liquid phase change based on lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2018, 98: 1-12. DOI: 10.1016/j.icheatmasstransfer.2018.05.021. |
21 | VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. DOI: 10.1016/0017-9310(87)90317-6. |
22 | QIAN Y H, ZHOU Y. Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation[J]. Europhysics Letters (EPL), 1998, 42(4): 359-364. DOI: 10.1209/epl/i1998-00255-3. |
23 | JANY P, BEJAN A. Scaling theory of melting with natural convection in an enclosure[J]. International Journal of Heat and Mass Transfer, 1988, 31(6): 1221-1235. DOI: 10.1016/0017-9310(88)90065-8. |
24 | HOUSE J M, BECKERMANN C, SMITH T F. Effect of a centered conducting body on natural convection heat transfer in an enclosure[J]. Numerical Heat Transfer, Part A: Applications, 1990, 18(2): 213-225. DOI: 10.1080/10407789008944791. |
25 | YOON H S, JUNG J H, LEE H S, et al. Effect of thermal boundary condition of an inner cube on three-dimensional natural convection in a cubical[J]. Journal of Mechanical Science and Technology, 2015, 29(10): 4527-4543. DOI: 10.1007/s12206-015-0952-x. |
[1] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[2] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[3] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[4] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[5] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
[6] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[7] | Ludi ZHANG, Guobing ZHOU. Simulated optimization of eccentricity and fin structure of a horizontal double-tube latent heat storage unit [J]. Energy Storage Science and Technology, 2024, 13(3): 1019-1029. |
[8] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[9] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[10] | Jinya ZHANG, Wenbo ZHOU, Ziyiyi CHENG. Performance comparison of metal foam and fin phase-change energy storage system based on LBM [J]. Energy Storage Science and Technology, 2024, 13(2): 598-607. |
[11] | Feng LI, Yuanwei LU, Yanquan WANG, Yancheng MA, Yuting WU. Effect of airfoil structure on flow and heat transfer characteristics of printed circuit heat exchanger [J]. Energy Storage Science and Technology, 2024, 13(2): 416-424. |
[12] | Xiongjie AI, Jun YUAN, Weizhong LYU, Li WAN. Research progress of integrated solar collector based on phase-change heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4409-4420. |
[13] | Weijie CHAI, Xijia ZHAO, Shihao CAO. Experimental and numerical studies on the melting heat storage of metal honeycomb-enhanced phase-change materials [J]. Energy Storage Science and Technology, 2024, 13(12): 4357-4367. |
[14] | Liming WANG, Mengqi WANG, Yimo LUO, Gesang YANG, Yuanyuan WANG, Lexiao WANG. Optimum design method for zeolite heat storage reactors [J]. Energy Storage Science and Technology, 2024, 13(12): 4272-4281. |
[15] | Zhenkun XIAO, Zhen CHEN, Zhuang YANG, Hongxun QI, Jun YAN. Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4330-4338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||