Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1460-1470.doi: 10.19799/j.cnki.2095-4239.2023.0843
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yunfeng ZHANG(), Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG
Received:
2023-11-21
Revised:
2023-12-13
Online:
2024-05-28
Published:
2024-05-28
Contact:
Yunfeng ZHANG
E-mail:549904696@qq.com
CLC Number:
Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy[J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470.
Table 1
Physical parameters of the material in question"
物性参数 | 石蜡RT46 | 石蜡RT58 | Bi-Pb-In-Sn-Cd | Bi-In-Pb-Sn | 铝 | 硅 |
---|---|---|---|---|---|---|
相变温度/℃ | 41~48 | 55~61 | 41~48 | 55~61 | ― | ― |
潜热/(kJ/kg) | 170 | 170 | 32.3 | 30.17 | ― | ― |
密度/(kg/m3) | 770 | 770 | 9 459 | 8 074 | 2 719 | 2 203 |
比热容/[J/(kg·K)] | 2 200 | 2 100 | 241 | 260 | 871 | 700 |
热导率/[W/(m·K)] | 0.2 | 0.2 | 14.7 | 16 | 202.4 | 1.37 |
黏度/(Pa·s) | 0.001exp(-4.25+1790/T) | 0.001 | 0.003 1 | ― | ― | |
热膨胀系数/K-1 | 0.000 1 | 0.000 11 | ― | ― | ― | ― |
1 | ALI H M, ARSHAD A, JABBAL M, et al. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1199-1204. |
2 | PENG P, WANG Y W, JIANG F M. Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2022, 209: 118293. |
3 | YANG T Y, BRAUN P V, MILJKOVIC N, et al. Phase change material heat sink for transient cooling of high-power devices[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121033. |
4 | HOSSEINIZADEH S F, TAN F L, MOOSANIA S M. Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins[J]. Applied Thermal Engineering, 2011, 31(17/18): 3827-3838. |
5 | SAHOO S K, DAS M K, RATH P. Application of TCE-PCM based heat sinks for cooling of electronic components: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 550-582. |
6 | HUA W S, ZHANG L Y, ZHANG X L. Research on passive cooling of electronic chips based on PCM: A review[J]. Journal of Molecular Liquids, 2021, 340: 117183. |
7 | 吴炜, 李守成, 谢纬安. 翅片参数与PCM材料对散热器传热影响实验研究[J]. 储能科学与技术, 2021, 10(6): 2303-2311. |
WU W, LI S C, XIE W A. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator[J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. | |
8 | 王雄, 吴智勇, 窦泽春, 等. 3D复合相变散热器在轨道交通中的热管理应用研究[J]. 机车电传动, 2021(5): 106-110. |
WANG X, WU Z Y, DOU Z C, et al. Research on thermal management application of 3D composite phase change radiator in rail transit[J]. Electric Drive for Locomotives, 2021(5): 106-110. | |
9 | 方健, 冯文创, 丁斌, 等. 导热和自然对流对石蜡定向熔化特性的影响[J]. 科学通报, 2021, 66(21): 2758-2765. |
FANG J, FENG W C, DING B, et al. Effects of thermal conduction and natural convection on directional melting characteristics of paraffin[J]. Chinese Science Bulletin, 2021, 66(21): 2758-2765. | |
10 | 周建辉, 王航, 刘杉, 等. 换流阀相变乳液换热性能及其工程应用研究[J]. 电网技术, 2022, 46(1): 395-403. |
ZHOU J H, WANG H, LIU S, et al. Heat transfer performance and engineering application of phase change dispersion for cooling system in the convert valve[J]. Power System Technology, 2022, 46(1): 395-403. | |
11 | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12): 5066-5085. |
LI Z, LI B R, CHEN H Z, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
12 | HUANG M J. The effect of using two PCMs on the thermal regulation performance of BIPV systems[J]. Solar Energy Materials and Solar Cells, 2011, 95(3): 957-963. |
13 | MORAGA N O, XAMÁN J P, ARAYA R H. Cooling Li-ion batteries of racing solar car by using multiple phase change materials[J]. Applied Thermal Engineering, 2016, 108: 1041-1054. |
14 | DING Y, KLEMEŠ J J, ZHAO P B, et al. Numerical study on 2-stage phase change heat sink for cooling of photovoltaic panel[J]. Energy, 2022, 249: 123679. |
15 | HUANG P R, WEI G S, CUI L, et al. Numerical investigation of a dual-PCM heat sink using low melting point alloy and paraffin[J]. Applied Thermal Engineering, 2021, 189: 116702. |
16 | HUANG P R, WEI G S, CUI L, et al. Experimental and numerical optimization of cascaded PCM heat sink by using low melting point alloys[J]. Energy Conversion and Management, 2022, 269: 116149. |
17 | AL SIYABI I, KHANNA S, MALLICK T, et al. Multiple phase change material (PCM) configuration for PCM-based heat sinks — An experimental study[J]. Energies, 2018, 11(7): 1629. |
18 | KANDASAMY R, WANG X Q, MUJUMDAR A S. Transient cooling of electronics using phase change material (PCM)-based heat sinks[J]. Applied Thermal Engineering, 2008, 28(8/9): 1047-1057. |
19 | VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. |
20 | VOLLER V, SWAMINATHAN C. Eral source-based method for solidification phase change[J]. Numerical Heat Transfer Part B - Fundamentals, 1991, 19: 175-189. |
21 | BESSEM D, ABDELKHALAK E H, AHMED Y, et al. Design optimization of PCM-based finned heat sinks for mechatronic components: A numerical investigation and parametric study[J]. Journal of Energy Storage, 2020, 32: 101960. |
22 | DENG Z L, ZHANG C B, SUN Q, et al. Experimental study on melting performance of phase change material-based finned heat sinks by a comprehensive evaluation[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(3): 869-882. |
[1] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[2] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[3] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
[4] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[5] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[6] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[7] | Hongbing CHEN, Yuhang LIU, Congcong WANG, Men LI, Yan ZHANG, Haoyang LU, Chunyang LI. Properties of composite shape-stabilized phase change materials incorporating docosane and dodecyl alcohol with added expanded graphite [J]. Energy Storage Science and Technology, 2024, 13(2): 396-404. |
[8] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[9] | Peng NI, Shihao CAO. Melting heat storage properties of metal honeycomb/paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2024, 13(2): 425-435. |
[10] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. |
[11] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[12] | Jiangtian ZHU, Yuan ZHANG, Yibin LUO, Huiting YANG, Jie LI, Xiaoqin SUN. Optimization of 5G communication base station cabinet based on heat storage of phase change material [J]. Energy Storage Science and Technology, 2023, 12(9): 2789-2798. |
[13] | Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. |
[14] | Min ZHAO, Yang LI, Jie CAI, Weibin KANG, Lei LIU. Experimental study on the performance of capillary phase-change energy storage tank for civil building [J]. Energy Storage Science and Technology, 2023, 12(8): 2626-2637. |
[15] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||