Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1451-1459.doi: 10.19799/j.cnki.2095-4239.2023.0840
• Energy Storage Materials and Devices • Previous Articles Next Articles
Rongyu XU(), Haitao LU, Hedu GUO, Zhanyun TANG, Qi LI(), Yuting WU
Received:
2023-11-21
Revised:
2023-12-12
Online:
2024-05-28
Published:
2024-05-28
Contact:
Qi LI
E-mail:2899355899@qq.com;liqi@bjut.edu.cn
CLC Number:
Rongyu XU, Haitao LU, Hedu GUO, Zhanyun TANG, Qi LI, Yuting WU. Form-stable quaternary nitrate salt-based composite phase change material with low melting temperature for low-medium-temperature thermal energy storage[J]. Energy Storage Science and Technology, 2024, 13(5): 1451-1459.
Table 2
Thermophysical properties of quaternary nitrate,60QN-40MgO, and CPCM"
样品 | 升温 | 降温 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tonset/℃ | Tpeak/℃ | Tend/℃ | cp /[J/(g·K)] | ∆Hmea/(J/g) | ∆Hcal/(J/g) | Tonset/℃ | Tpeak/℃ | Tend/℃ | ∆Hmea/(J/g) | |
四元硝酸盐 | 68.17 | 75.06 | 79.71 | 1.41 | 110.6 | 110.6 | 103.6 | 93 | 80.5 | 80.19 |
60QN-40MgO | 70.81 | 76.50 | 80.09 | 0.7 | 65.92 | 66.36 | 103.1 | 89.7 | 80.9 | 44.31 |
复合材料 | 70.09 | 76.77 | 80.12 | 0.93 | 59.57 | 61.49 | 104.8 | 96.1 | 88.5 | 40.66 |
1 | DU K, CALAUTIT J, WANG Z H, et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J]. Applied Energy, 2018, 220: 242-273. |
2 | WEI G S, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. |
3 | ZHANG Z, DING T, ZHOU Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148(3): 111263. |
4 | LIN Y X, ALVA G, FANG G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708. |
5 | LI C, LI Q, LU X K, et al. Inorganic salt based shape-stabilized composite phase change materials for medium and high temperature thermal energy storage: Ingredients selection, fabrication, microstructural characteristics and development, and applications[J]. Journal of Energy Storage, 2022, 55: 105252. |
6 | 吴玉庭, 明苏布道, 张灿灿, 等. 三元混合碳酸熔盐热物性实验研究[J]. 储能科学与技术, 2021, 10(4): 1292-1296. |
WU Y T, MING S B D, ZHANG C C, et al. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts[J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. | |
7 | IBRAHIM N I, AL-SULAIMAN F A, RAHMAN S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
8 | ZHANG H J, ZHANG X G, PAN D A, et al. Preparation and application of high-temperature composite phase change materials[J]. Journal of Energy Storage, 2023, 68: 107669. |
9 | LI C, LI Q, LI Y L, et al. Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications[J]. Applied Energy, 2019, 238: 1074-1083. |
10 | MEHRALI M, TEN ELSHOF J E, SHAHI M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material[J]. Chemical Engineering Journal, 2021, 405: 126624. |
11 | KUMAR N, GUPTA S K. Progress and application of phase change material in solar thermal energy: An overview[J]. Materials Today: Proceedings, 2021, 44: 271-281. |
12 | YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377. |
13 | SANG L X, LI F, XU Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180: 1-7. |
14 | JIANG Z, JIANG F, LI C, et al. A form stable composite phase change material for thermal energy storage applications over 700 ℃[J]. Applied Sciences, 2019, 9(5): 814. |
15 | GE Z W, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81. |
16 | YE F, GE Z W, DING Y L, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15: 56-60. |
17 | WANG H R, RAN X F, ZHONG Y J, et al. Ternary chloride salt-porous ceramic composite as a high-temperature phase change material[J]. Energy, 2022, 238: 121838. |
18 | TAO Y B, LIN C H, HE Y L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management, 2015, 97: 103-110. |
19 | WANG T Y, WANG K C, YE F, et al. Characterization and thermal properties of a shape-stable Na2CO3-K2CO3/coal fly ash/expanded graphite composite phase change materials for high-temperature thermal energy storage[J]. Journal of Energy Storage, 2021, 33: 102123. |
20 | REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163(1): 50-58. |
21 | JIANG Z, LENG G H, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106: 165-172. |
22 | LI Q, WEI W Z, LI Y Y, et al. Development and investigation of form-stable quaternary nitrate salt based composite phase change material with extremely low melting temperature and large temperature range for low-mid thermal energy storage[J]. Energy Reports, 2022, 8: 1528-1537. |
23 | DENG Y, LI J H, NIAN H E. Expanded vermiculite: A promising natural encapsulation material of LiNO3, NaNO3, and KNO3 phase change materials for medium-temperature thermal energy storage[J]. Advanced Engineering Materials, 2018, 20(8): 1800135. |
24 | 李钰颖, 魏雯珍, 李琦, 等. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051. |
LI Y Y, WEI W Z, LI Q, et al. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage[J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. | |
25 | YANG C, NAVARRO M E, ZHAO B, et al. Thermal conductivity enhancement of recycled high density polyethylene as a storage media for latent heat thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 152: 103-110. |
[1] | Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. |
[2] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[3] | Yucheng DAI, Zengpeng WANG, Kaibao LIU, Jiateng ZHAO, Changhui LIU. Research progress of heat storage and heat transfer enhancement based on phase change materials [J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. |
[4] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[5] | Hang YIN, Qiang WANG, Jiahua ZHU, Zhirong LIAO, Zinan ZHANG, Ershu XU, Chao XU. Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(12): 3749-3760. |
[6] | Tan SHUI, Yuting WU, Chuan LI, Qi LI. Preparation and properties of ternary nitrate-@silica microencapsulated phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3595-3604. |
[7] | Xin ZHANG, Zuoxia XING, Qitong FU, Chao ZHANG, Libing JIANG. Multiphysics study of induction heating for solid electric heat storage devices [J]. Energy Storage Science and Technology, 2023, 12(12): 3761-3769. |
[8] | Tianlie XIAO, Qingchun YU, Zhiping LIU, Shubiao YIN. Preparation and properties of modified fly ash-based high temperature-shaped composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3699-3708. |
[9] | Jingjiao LI, Cuilei YANG, Wei LI. Research on computer software processing technology in thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3895-3897. |
[10] | Mingzhong WAN, Jinlong WANG, Yongan CHEN, Yuanwei LU, Yuting WU, Cancan ZHANG. Compatibility of low-temperature mixed nitrate and Q345R storage tank material [J]. Energy Storage Science and Technology, 2023, 12(10): 3099-3107. |
[11] | Fa MAO, Xuelai ZHANG, Weisan HUA. Research progress of aluminum potassium sulfate dodecahydrate phase-change material for thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 120-130. |
[12] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[13] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[14] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[15] | Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||