Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4384-4395.doi: 10.19799/j.cnki.2095-4239.2024.0780
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Junsheng FENG1(), Yaru YAN1, Lu WANG1, Liang ZHAO2, Hui DONG2()
Received:
2024-08-20
Revised:
2024-09-04
Online:
2024-12-28
Published:
2024-12-23
Contact:
Hui DONG
E-mail:fjsheng076@163.com;Dongh@mail.neu.edu.cn
CLC Number:
Junsheng FENG, Yaru YAN, Lu WANG, Liang ZHAO, Hui DONG. Thermodynamic performance study of a pumped thermal energy storage system coupled with low-temperature waste heat recovery[J]. Energy Storage Science and Technology, 2024, 13(12): 4384-4395.
1 | 董益秀, 王如竹. 高温热泵的循环、工质研究及应用展望[J]. 化工学报, 2023, 74(1): 133-144. DOI: 10.11949/0438-1157.20220995. |
DONG Y X, WANG R Z. High temperature heat pump: Cycle configurations, working fluids and application potentials[J]. CIESC Journal, 2023, 74(1): 133-144. DOI: 10.11949/0438-1157.20220995. | |
2 | JIANG J T, HU B, WANG R Z, et al. A review and perspective on industry high-temperature heat pumps[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112106. DOI: 10.1016/j.rser.2022.112106. |
3 | 姚同路, 吴伟, 杨勇, 等. "双碳" 目标下中国钢铁工业的低碳发展分析[J]. 钢铁研究学报, 2022, 34(6): 505-513. DOI: 10.13228/j.boyuan.issn1001-0963.20210399. |
YAO T L, WU W, YANG Y, et al. Analysis on low-carbon development of China's steel industry under "dual-carbon" goal[J]. Journal of Iron and Steel Research, 2022, 34(6): 505-513. DOI: 10.13228/j.boyuan.issn1001-0963.20210399. | |
4 | YIN R Y, LIU Z D, SHANGGUAN F Q. Thoughts on the implementation path to a carbon peak and carbon neutrality in China's steel industry[J]. Engineering, 2021, 7(12): 1680-1683. DOI: 10.1016/j.eng.2021.10.008. |
5 | 冯军胜, 董辉, 王爱华, 等. 烧结余热罐式回收系统及其关键问题[J]. 钢铁研究学报, 2015, 27(6): 7-11. DOI: 10.13228/j.boyuan.issn1001-0963.20140127. |
FENG J S, DONG H, WANG A H, et al. Recovery system and key issues of vertical tank for recovering sinter waste heat[J]. Journal of Iron and Steel Research, 2015, 27(6): 7-11. DOI: 10.13228/j.boyuan.issn1001-0963.20140127. | |
6 | 张进华, 秦强, 赵香龙, 等. 低品位工业余热利用技术及研究进展[J]. 能源科技, 2022, 20(4): 86-92. |
ZHANG J H, QIN Q, ZHAO X L, et al. Technologies for low-grade industrial waste heat utilization and research progress[J]. Energy Science and Technology, 2022, 20(4): 86-92. | |
7 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. | |
8 | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. DOI: 10.1016/j.est.2020.101756. |
9 | EPPINGER B, ZIGAN L, KARL J, et al. Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids[J]. Applied Energy, 2020, 280: 115940. DOI: 10.1016/j.apenergy.2020.115940. |
10 | XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: 115502. DOI: 10.1016/j.enconman.2022.115502. |
11 | ROSKOSCH D, VENZIK V, ATAKAN B. Potential analysis of pumped heat electricity storages regarding thermodynamic efficiency[J]. Renewable Energy, 2020, 147: 2865-2873. DOI: 10.1016/j.renene.2018.09.023. |
12 | STEINMANN W D. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69: 543-552. DOI: 10.1016/j.energy. 2014.03.049. |
13 | STEINMANN W D. Thermo-mechanical concepts for bulk energy storage[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 205-219. DOI: 10.1016/j.rser.2016.10.065. |
14 | ZHANG M Y, SHI L F, ZHANG Y H, et al. Configuration mapping of thermally integrated pumped thermal energy storage system[J]. Energy Conversion and Management, 2023, 294: 117561. DOI: 10.1016/j.enconman.2023.117561. |
15 | NIU J T, WANG J S, LIU X L, et al. Optimal integration of solar collectors to Carnot battery system with regenerators[J]. Energy Conversion and Management, 2023, 277: 116625. DOI: 10.1016/j.enconman.2022.116625. |
16 | 圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657. DOI: 10.19799/j.cnki.2095-4239.2022.0296. |
SHENG L, XUE X J, BO Y J, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. DOI: 10.19799/j.cnki.2095-4239.2022.0296. | |
17 | WANG G B, ZHANG X R. Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy[J]. Energy Conversion and Management, 2017, 148: 1248-1264. DOI: 10.1016/j.enconman. 2017.06.044. |
18 | CHEN L X, HU P, ZHAO P P, et al. Thermodynamic analysis of a High Temperature Pumped Thermal Electricity Storage (HT-PTES) integrated with a parallel organic Rankine cycle (ORC)[J]. Energy Conversion and Management, 2018, 177: 150-160. DOI: 10.1016/j.enconman.2018.09.049. |
19 | YAN Y L, YANG F B, ZHANG H G, et al. Thermodynamic evaluation of a novel Rankine-based pumped thermal energy storage concept targeting thermal coordination and large temperature span[J]. Energy Conversion and Management, 2024, 309: 118439. DOI: 10.1016/j.enconman.2024.118439. |
20 | 赵永亮, 王朝阳, 刘明, 等. 基于跨临界循环的卡诺电池储能系统构型优化[J]. 工程热物理学报, 2021, 42(7): 1659-1666. |
ZHAO Y L, WANG C Y, LIU M, et al. Configuration optimization of Carnot battery energy storage system based on transcritical cycles[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1659-1666. | |
21 | WANG Z, XIA R, JIANG Y M, et al. Evaluation and optimization of an engine waste heat assisted Carnot battery system for ocean-going vessels during harbor stays[J]. Journal of Energy Storage, 2023, 73: 108866. DOI: 10.1016/j.est.2023.108866. |
22 | 冯永强, 王玉, 吴秀芝, 等. 耦合蒸汽压缩制冷循环和有机朗肯循环的冷电联供系统参数分析[J]. 江苏大学学报(自然科学版), 2022, 43(5): 566-572. DOI: 10.3969/j.issn.1671-7775.2022.05.011. |
FENG Y Q, WANG Y, WU X Z, et al. Parameter analysis of combined cooling and power system with vapor compression refrigeration cycle and organic Rankine cycle[J]. Journal of Jiangsu University (Natural Science Edition), 2022, 43(5): 566-572. DOI: 10.3969/j.issn.1671-7775.2022.05.011. | |
23 | VAITKUS L, DAGILIS V. Analysis of alternatives to high GWP refrigerants for eutectic refrigerating systems[J]. International Journal of Refrigeration, 2017, 76: 160-169. DOI: 10.1016/j.ijrefrig.2017.01.024. |
24 | YU X H, QIAO H N, YANG B, et al. Thermal-economic and sensitivity analysis of different Rankine-based Carnot battery configurations for energy storage[J]. Energy Conversion and Management, 2023, 283: 116959. DOI: 10.1016/j.enconman. 2023.116959. |
[1] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[2] | Wenjun SONG, Zhonglu HE, Bin CAO, Ziwei LIANG, Chunmei GUO. Experimental study on the performance of a pumped thermal electricity storage system based on the subcritical organic rankine cycle [J]. Energy Storage Science and Technology, 2024, 13(12): 4339-4348. |
[3] | Junsheng FENG, Yaru YAN, Liang ZHAO, Hui DONG. Performance analysis of a Carnot battery thermal energy storage system based on organic Rankine cycle [J]. Energy Storage Science and Technology, 2024, 13(11): 3930-3938. |
[4] | Hang YIN, Qiang WANG, Jiahua ZHU, Zhirong LIAO, Zinan ZHANG, Ershu XU, Chao XU. Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(12): 3749-3760. |
[5] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[6] | Limu XIAO, Xin GAO, Shihai ZHANG, Xiankui WEN. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. |
[7] | Lexuan LI, Yujie XU, Zhao YIN, Huan GUO, Xianrong ZHANG, Haisheng CHEN, Xuezhi ZHOU. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. |
[8] | Xi CHEN, Lingxuan HE, Qinxiao LIU, Ye FANG, Shichun LONG, Zhongmin WAN. Thermodynamic analysis of vehicle fuel cell system under dynamic conditions [J]. Energy Storage Science and Technology, 2021, 10(4): 1416-1422. |
[9] | BAI Wengang, ZHANG Chun, ZHANG Lei, YANG Yu, ZHANG Yifan, LI Hongzhi. Thermodynamic analysis of novel hybrid liquid air energy storage system combined with ORC [J]. Energy Storage Science and Technology, 2019, 8(5): 880-885. |
[10] | DENG Guangyi, GUO Zuogang, CHEN Guangming. Design and thermodynamic analysis of compressed air energy storage system [J]. Energy Storage Science and Technology, 2013, 2(6): 615-619. |
[11] | ZHAO Liang, WANG Haiyang, FANG Xiangchen, WANG Gang, XU Hong. Modification of fly ash as a carrier of paraffin wax based phase change energy storage material for waste heat recovery [J]. Energy Storage Science and Technology, 2013, 2(6): 598-602. |
[12] | ZHANG Guocai 1,2,3,XU Zhe1,CHEN Yunfa2,LI Jianqiang1. Progress in metal-based phase change materials for thermal energy storage applications [J]. Energy Storage Science and Technology, 2012, 1(1): 74-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||