Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4421-4435.doi: 10.19799/j.cnki.2095-4239.2024.0855
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Dalin WEI1(), Lin ZHU2, Xiang LING1(), Feng JIANG1
Received:
2024-09-12
Revised:
2024-10-06
Online:
2024-12-28
Published:
2024-12-23
Contact:
Xiang LING
E-mail:weidalin@njtech.edu.cn;xling@njtech.edu.cn
CLC Number:
Dalin WEI, Lin ZHU, Xiang LING, Feng JIANG. Research progress of MgCl2-NaCl-KCl molten salt for high-temperature heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4421-4435.
Table 1
The performance and price of molten salt as an HTF/TES material in CSP[5]"
熔盐及其质量分数/% | 熔点/℃ | 最大工作温度/℃ | 密度/(g/cm3) | 比热容/[kJ/(kg·K)] | 价格/(CNY/kg) |
---|---|---|---|---|---|
KNO3/NaNO3(40/60) | 240 | 565 | ~1.8(400 ℃) | ~1.5 | 3.51~5.61 |
KNO3/NaNO3/NaNO2(53/7/40) | 142 | 540 | ~1.8(400 ℃) | 1.5 | 6.31 |
K2CO3/Li2CO3/Na2CO3(32/35/33) | 397 | >650 | 2.0(700 ℃) | 1.9(700 ℃) | 9.11~17.53 |
KF/LiF/NaF(59/29/12) | 454 | >700 | 2.0(700 ℃) | 1.9(700 ℃) | >14.20 |
KCl/NaCl/ZnCl2(23.9/7.5/68.6) | 204 | 850 | ~2.0(600 ℃) | 0.8(300~600 ℃) | <7.01 |
KCl/MgCl2/NaCl(17.8/68.2/14.0) | 380 | >800 | ~1.7(600 ℃) | ~1.0(500~800 ℃) | <2.45 |
1 | KURKUTE N, PRIYAM A. A thorough review of the existing concentrated solar power technologies and various performance enhancing techniques[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(24): 14713-14737. DOI: 10.1007/s10973-022-11634-8. |
2 | STOFFEL T, RENNÉ D, MYERS D, et al. Concentrating solar power: Best practices handbook for the collection and use of solar resource data (CSP)[R]. United States: National Renewable Energy Laboratory, 2010 |
3 | ZHANG H L, BAEYENS J, CÁCERES G, et al. Thermal energy storage: Recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53: 1-40. DOI: 10.1016/j.pecs.2015.10.003. |
4 | 葛志伟, 叶锋, Mathieu LASFARGUES, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102. |
GE Z W, YE F, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102. | |
5 | DING W J, BAUER T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334-347. DOI: 10.1016/j.eng.2020.06.027. |
6 | BRADSHAW R W, DAWSON D B, DE LA ROSA W, et al. Final test and evaluation results from the solar two project[J]. Energy Storage, 2002: DOI: 10.2172/793226. |
7 | LIU Q, LANGE R A. New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component[J]. Contributions to Mineralogy and Petrology, 2003, 146(3): 370-381. DOI: 10.1007/s00410-003-0505-7. |
8 | OLIVARES R I, CHEN C L, WRIGHT S. The thermal stability of molten lithium-sodium-potassium carbonate and the influence of additives on the melting point[J]. Journal of Solar Energy Engineering, 2012, 134(4): 041002. DOI: 10.1115/1.4006895. |
9 | AN X H, CHENG J H, ZHANG P, et al. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt[J]. Faraday Discussions, 2016, 190: 327-338. DOI: 10.1039/c5fd00236b. |
10 | 汪洋, 唐忠锋, 谢雷东, 等. 高温氟化盐对熔盐堆用材料的腐蚀行为研究进展[J]. 化学通报, 2013, 76(4): 307-312. DOI: 10.14159/j.cnki.0441-3776.2013.04.002. |
WANG Y, TANG Z F, XIE L D, et al. The research progress of corrosion behavior of materials for molten salt reactors in high temperature molten fluorides[J]. Chemistry, 2013, 76(4): 307-312. DOI: 10.14159/j.cnki.0441-3776.2013.04.002. | |
11 | 李润达. 塔式太阳能热发电中熔盐储能材料的筛选[J]. 电工材料, 2022(1): 45-48. DOI: 10.16786/j.cnki.1671-8887.eem.2022.01.012. |
LI R D. Selection of heat storage molten salt used in solar tower thermal plants[J]. Electrical Engineering Materials, 2022(1): 45-48. DOI: 10.16786/j.cnki.1671-8887.eem.2022.01.012. | |
12 | VILLADA C, DING W J, BONK A, et al. Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: Review on salt properties and corrosion control strategies[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111344. DOI: 10.1016/j.solmat.2021.111344. |
13 | POLIMENI S, BINOTTI M, MORETTI L, et al. Comparison of sodium and KCl-MgCl2 as heat transfer fluids in CSP solar tower with sCO2 power cycles[J]. Solar Energy, 2018, 162: 510-524. DOI: 10.1016/j.solener.2018.01.046. |
14 | XU X K, WANG X X, LI P W, et al. Experimental test of properties of KCl-MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems[J]. Journal of Solar Energy Engineering, 2018, 140(5): 051011. DOI: 10.1115/1.4040065. |
15 | LU J F, YANG S F, RONG Z Z, et al. Thermal properties of KCl-MgCl2 eutectic salt for high-temperature heat transfer and thermal storage system[J]. Solar Energy Materials and Solar Cells, 2021, 228: 111130. DOI: 10.1016/j.solmat.2021.111130. |
16 | WILLIAMS D. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop[R]. United States: Oak Ridge National Lab, 2006. |
17 | AMBROSEK J. Molten dhloride salts for heat transfer in nuclear systems[D]. Madison: The University of Wisconsin, 2011. |
18 | DUEMMLER K, WOODS M, KARLSSON T, et al. First-principles-derived transport properties of molten chloride salts[J]. Journal of Nuclear Materials, 2023, 585: 154601. DOI: 10.1016/j. jnucmat. 2023.154601. |
19 | DING W J, BONK A, BAUER T. Molten chloride salts for next generation CSP plants: Selection of promising chloride salts & study on corrosion of alloys in molten chloride salts[C]// SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2019: DOI: 10.1063/1.5117729. |
20 | MOHAN G, VENKATARAMAN M B, COVENTRY J. Sensible energy storage options for concentrating solar power plants operating above 600 ℃[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 319-337. DOI: 10.1016/j.rser.2019.01.062. |
21 | VIDAL J C, KLAMMER N. Molten chloride technology pathway to meet the U. S. DOE sunshot initiative with Gen3 CSP[C]// SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2019: DOI: 10.1063/1.5117601. |
22 | LI X J, LI N, LIU W H, et al. Unrevealing the thermophysical properties and microstructural evolution of MgCl2-NaCl-KCl eutectic: FPMD simulations and experimental measurements[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110504. DOI: 10.1016/j.solmat.2020.110504. |
23 | DING W J, SHI H, XIU Y L, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere[J]. Solar Energy Materials and Solar Cells, 2018, 184: 22-30. DOI: 10.1016/j. solmat. 2018.04.025. |
24 | MAKSOUD L, BAUER T. Experimental investigation of chloride molten salts for thermal energy storage applications[C]// Proceedings of The 10th International Conference on Molten Salt Chemistry and Technology, 2015. |
25 | BONK A, SAU S, URANGA N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants[J]. Progress in Energy and Combustion Science, 2018, 67: 69-87. DOI: 10.1016/j.pecs.2018.02.002. |
26 | XU X K, DEHGHANI G, NING J X, et al. Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA[J]. Solar Energy, 2018, 162: 431-441. DOI: 10.1016/j.solener.2018.01.067. |
27 | WANG X X. Investigation of the thermal and transport properties of NaCl-KCl-MgCl2-CaCl2 molten salt for application as HTF and TES media in CSP systems[D]. Arizona: The University of Arizona, 2020. |
28 | LI Y Y, XU X K, WANG X X, et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP[J]. Solar Energy, 2017, 152: 57-79. DOI: 10.1016/j.solener.2017.03.019. |
29 | MOHAN G, VENKATARAMAN M, GOMEZ-VIDAL J, et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy Conversion and Management, 2018, 167: 156-164. DOI: 10.1016/j.enconman.2018.04.100. |
30 | VILLADA C, DING W J, BONK A, et al. Simulation-assisted determination of the minimum melting temperature composition of MgCl2-KCl-NaCl salt mixture for next-generation molten salt thermal energy storage[J]. Frontiers in Energy Research, 2022, 10: 809663. DOI: 10.3389/fenrg.2022.809663. |
31 | WANG X X, DEL RINCON J, LI P W, et al. Thermophysical properties experimentally tested for NaCl-KCl-MgCl2 eutectic molten salt as a next-generation high-temperature heat transfer fluids in concentrated solar power systems[J]. Journal of Solar Energy Engineering, 2021, 143(4): 041005. DOI: 10.1115/1. 4049253. |
32 | ZHAO Y Y, VIDAL J. Potential scalability of a cost-effective purification method for MgCl2-Containing salts for next-generation concentrating solar power technologies[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110663. DOI: 10.1016/j.solmat. 2020.110663. |
33 | CHUNG K M, ZHANG Y, ZENG J, et al. In-situ thermophysical measurement of flowing molten chloride salt using modulated photothermal radiometry[J]. Solar Energy, 2023, 265: 112124. DOI: 10.1016/j.solener.2023.112124. |
34 | TIAN H Q, DU L C, HUANG C L, et al. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer[J]. Journal of Materials Chemistry A, 2017, 5(28): 14811-14818. DOI: 10.1039/C7TA04169A. |
35 | AWAD A, NAVARRO H, DING Y L, et al. Thermal-physical properties of nanoparticle-seeded nitrate molten salts[J]. Renewable Energy, 2018, 120: 275-288. DOI: 10.1016/j.renene. 2017.12.026. |
36 | SONG W L, LU Y W, WU Y T, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J]. Solar Energy Materials and Solar Cells, 2018, 179: 66-71. DOI: 10.1016/j.solmat.2018.01.014. |
37 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. DOI: 10.1016/j.ensm.2019.10.010. |
38 | REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid- to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163: 50-58. DOI: 10.1016/j.enconman.2018.02.057. |
39 | SANG L X, LIU T. The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles[J]. Solar Energy Materials and Solar Cells, 2017, 169: 297-303. DOI: 10.1016/j.solmat.2017.05.032. |
40 | ZHANG Z L, YUAN Y P, OUYANG L P, et al. Enhanced thermal properties of Li2CO3-Na2CO3-K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1783-1792. DOI: 10.1007/s10973-016-6050-1. |
41 | HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: 114674. DOI: 10.1016/j.apenergy. 2020.114674. |
42 | YU Q, ZHANG C C, LU Y W, et al. Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system[J]. Renewable Energy, 2021, 172: 1120-1132. DOI: 10.1016/j.renene.2021.03.061. |
43 | BALE C W, BÉLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases, 2010—2016[J]. Calphad, 2016, 54: 35-53. DOI: 10.1016/j.calphad.2016.05.002. |
44 | 杨薛明, 刘杰庭, 崔吉祥, 等. 氯化物熔盐单质及其混合物热物性的分子动力学模拟研究[J]. 太阳能学报, 2022, 43(11): 433-442. DOI: 10.19912/j.0254-0096.tynxb.2021-0525. |
YANG X M, LIU J T, CUI J X, et al. Molecular dynamics simulation research of thermophysical properties of chloride molten salts and their mixtures[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 433-442. DOI: 10.19912/j.0254-0096.tynxb.2021-0525. | |
45 | ZHOU W G, ZHANG Y P, SALANNE M. Effects of fluoride salt addition to the physico-chemical properties of the MgCl2-NaCl-KCl heat transfer fluid: A molecular dynamics study[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111649. DOI: 10.1016/j.solmat.2022.111649. |
46 | GHERIBI A E, PHAN A T, CHARTRAND P. A theoretical framework for reliable predictions of thermal conductivity of multicomponent molten salt mixtures: KCl-NaCl-MgCl2 as a case study[J]. Solar Energy Materials and Solar Cells, 2022, 236: 111478. DOI: 10.1016/j.solmat.2021.111478. |
47 | TIAN H Q, KOU Z Y, PANG X C, et al. Molecular dynamics simulation on thermophysical properties and local structure of ternary chloride salt for thermal energy storage and transfer system[J]. Energy, 2023, 284: 129277. DOI: 10.1016/j.energy.2023.129277. |
48 | LAMBRECHT M, DEMIGUEL M T, LASANTA M I, et al. Computational modelling of the local structure and thermophysical properties of ternary MgCl2-NaCl-KCl salt for thermal energy storage applications[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123273. DOI: 10.1016/j.ijheatmasstransfer. 2022. 123273. |
49 | FENG T X, LU G M. Hydration MgCl2-NaCl-KCl molten salt using a novel approach for training machine learning potential[J]. Journal of Molecular Liquids, 2024, 394: 123533. DOI: 10.1016/j.molliq.2023.123533. |
50 | DONG W H, TIAN H Q, ZHANG W G, et al. Development of NaCl-MgCl2-CaCl2 ternary salt for high-temperature thermal energy storage using machine learning[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 530-539. DOI: 10.1021/acsami.3c13412. |
51 | GRÉGOIRE B, OSKAY C, MEIßNER T M, et al. Corrosion mechanisms of ferritic-martensitic P91 steel and inconel 600 nickel-based alloy in molten chlorides. part II: NaCl-KCl-MgCl2 ternary system[J]. Solar Energy Materials and Solar Cells, 2020, 216: 110675. DOI: 10.1016/j.solmat.2020.110675. |
52 | REN S, CHEN Y J, YE X X, et al. Corrosion behavior of carburized 316 stainless steel in molten chloride salts[J]. Solar Energy, 2021, 223: 1-10. DOI: 10.1016/j.solener.2021.05.057. |
53 | LAMBRECHT M, GARCÍA-MARTÍN G, DE MIGUEL M T, et al. Corrosion study of Ni-based alloy in ternary chloride salt for thermal storage application[J]. Corrosion Science, 2022, 208: 110673. DOI: 10.1016/j.corsci.2022.110673. |
54 | LIU S J, WANG R D, WANG L, et al. Corrosion behavior of iron-based and Ni-based alloys melted in NaCl-MgCl2-KCl mixed molten salt under vacuum atmosphere[J]. Journal of Materials Research and Technology, 2024, 28: 1915-1923. DOI: 10.1016/j.jmrt.2023.12.121. |
55 | SUN H, WANG J Q, LI Z J, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt[J]. Solar Energy, 2018, 171: 320-329. DOI: 10.1016/j.solener.2018.06.094. |
56 | GRAY A M. Corrosion mitigation of nickelalloy metals in molten chloride salts[D]. Arizona: The University of Arizona, 2021. |
57 | LIU S N, LIU Z D, WANG Y T, et al. A comparative study on the high temperature corrosion of TP347H stainless steel, C22 alloy and laser-cladding C22 coating in molten chloride salts[J]. Corrosion Science, 2014, 83: 396-408. DOI: 10.1016/j.corsci.2014.03.012. |
58 | HOFMEISTER M, KLEIN L, MIRAN H, et al. Corrosion behaviour of stainless steels and a single crystal superalloy in a ternary LiCl-KCl-CsCl molten salt[J]. Corrosion Science, 2015, 90: 46-53. DOI: 10.1016/j.corsci.2014.09.009. |
59 | DING W J, BONK A, GUSSONE J, et al. Cyclic voltammetry for monitoring corrosive impurities in molten chlorides for thermal energy storage[J]. Energy Procedia, 2017, 135: 82-91. DOI: 10.1016/j.egypro.2017.09.489. |
60 | DING W J, BONK A, BAUER T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review[J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 564-576. DOI: 10.1007/s11705-018-1720-0. |
61 | SUN H, WANG J Q, TANG Z F, et al. Assessment of effects of Mg treatment on corrosivity of molten NaCl-KCl-MgCl2 salt with Raman and infrared spectra[J]. Corrosion Science, 2020, 164: 108350. DOI: 10.1016/j.corsci.2019.108350. |
62 | MORTAZAVI A, ZHAO Y, ESMAILY M, et al. High-temperature corrosion of a nickel-based alloy in a molten chloride environment — The effect of thermal and chemical purifications[J]. Solar Energy Materials and Solar Cells, 2022, 236: 111542. DOI: 10.1016/j.solmat.2021.111542. |
63 | DING W J, SHI H, JIANU A, et al. Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials[J]. Solar Energy Materials and Solar Cells, 2019, 193: 298-313. DOI: 10.1016/j.solmat.2018.12.020. |
64 | GONG Q, SHI H, CHAI Y, et al. Molten chloride salt technology for next-generation CSP plants: Compatibility of Fe-based alloys with purified molten MgCl2-KCl-NaCl salt at 700 ℃[J]. Applied Energy, 2022, 324: 119708. DOI: 10.1016/j.apenergy.2022.119708. |
65 | CHOI S, ORABONA N E, DALE O R, et al. Effect of Mg dissolution on cyclic voltammetry and open circuit potentiometry of molten MgCl2-KCl-NaCl candidate heat transfer fluid for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2019, 202: 110087. DOI: 10.1016/j.solmat.2019.110087. |
66 | ZHU M, YI H, LU J T, et al. Corrosion of Ni-Fe based alloy in chloride molten salts for concentrating solar power containing aluminum as corrosion inhibitor[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111737. DOI: 10.1016/j.solmat.2022.111737. |
67 | DING W J, GOMEZ-VIDAL J, BONK A, et al. Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level[J]. Solar Energy Materials and Solar Cells, 2019, 199: 8-15. DOI: 10.1016/j.solmat.2019.04.021. |
68 | DING W J, YANG F, BONK A, et al. Molten chloride salts for high-temperature thermal energy storage: Continuous electrolytic salt purification with two Mg-electrodes and alternating voltage for corrosion control[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110979. DOI: 10.1016/j.solmat.2021.110979. |
69 | KONDAIAH P, PITCHUMANI R. Electrodeposited nickel coatings for exceptional corrosion mitigation in industrial grade molten chloride salts for concentrating solar power[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113848. DOI: 10.1016/j.rser.2023.113848. |
70 | SHI Z Y, TANG G J, LEI Y N, et al. Hot corrosion behavior of Co-W coated ferritic stainless steel in molten chloride salt[J]. Surface and Coatings Technology, 2024, 480: 130590. DOI: 10.1016/j.surfcoat.2024.130590. |
71 | XU S P, ZHENG Y H, ZHAN F Q, et al. Effect of Al content on in situ formation of Al2O3 protective layer on Ni-Al coatings in high-temperature chloride molten salt[J]. Materials Letters, 2024, 364: 136300. DOI: 10.1016/j.matlet.2024.136300. |
72 | GOMEZ-VIDAL J C, FERNANDEZ A G, TIRAWAT R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests[J]. Solar Energy Materials and Solar Cells, 2017, 166: 222-233. DOI: 10.1016/j.solmat.2017.02.019. |
73 | OKONKWO B O, KIM C, AN T, et al. Corrosion behaviour of Al-containing alloys in Cl-based molten salt environment[J]. Journal of Nuclear Materials, 2024, 599: 155207. DOI: 10.1016/j.jnucmat.2024.155207. |
74 | WU Y Q, JIA M Y, HUANG Z F, et al. High-temperature corrosion of a Si3N4/W composite exposed to molten MgCl2-NaCl-KCl salts[J]. Corrosion Science, 2024, 230: 111942. DOI: 10.1016/j.corsci. 2024.111942. |
75 | KIM H, JANG H, OBULAN SUBRAMANIAN G, et al. Development of alumina-forming duplex stainless steels as accident-tolerant fuel cladding materials for light water reactors[J]. Journal of Nuclear Materials, 2018, 507: 1-14. DOI: 10.1016/j. jnucmat. 2018.04.027. |
76 | ONG T C, SARVGHAD M, LIPPIATT K, et al. Review of the solubility, monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110006. DOI: 10.1016/j.rser.2020.110006. |
77 | DING W J, BONK A, GUSSONE J, et al. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage[J]. Journal of Energy Storage, 2018, 15: 408-414. DOI: 10.1016/j.est.2017.12.007. |
[1] | Qun GE, Tao LIANG, Bin HOU, Wanhong WANG, Long ZHANG, Liangyu WU, Chengbin ZHANG, Xiangdong LIU. Performance enhancement of thermal energy storage units for plant factories [J]. Energy Storage Science and Technology, 2024, 13(8): 2687-2695. |
[2] | Rongyu XU, Haitao LU, Hedu GUO, Zhanyun TANG, Qi LI, Yuting WU. Form-stable quaternary nitrate salt-based composite phase change material with low melting temperature for low-medium-temperature thermal energy storage [J]. Energy Storage Science and Technology, 2024, 13(5): 1451-1459. |
[3] | Yujie ZHANG, Jiangyun CHEN, Jianqiang LI, Yanjun DAI. China Thermal Energy Storage Industry Development Report (2024)—Industry technologies, development status, and model projects [J]. Energy Storage Science and Technology, 2024, 13(12): 4452-4463. |
[4] | Junsheng FENG, Yaru YAN, Lu WANG, Liang ZHAO, Hui DONG. Thermodynamic performance study of a pumped thermal energy storage system coupled with low-temperature waste heat recovery [J]. Energy Storage Science and Technology, 2024, 13(12): 4384-4395. |
[5] | Chao YU, Gechuanqi PAN. Molecular dynamics study on structure and thermal properties of high-performance chloride molten salt [J]. Energy Storage Science and Technology, 2024, 13(12): 4368-4380. |
[6] | Heng LI, Zhijuan WANG. Research on performance evaluation and optimization strategies of thermal energy storage systems based on big data analysis [J]. Energy Storage Science and Technology, 2024, 13(12): 4381-4383. |
[7] | Junsheng FENG, Yaru YAN, Liang ZHAO, Hui DONG. Performance analysis of a Carnot battery thermal energy storage system based on organic Rankine cycle [J]. Energy Storage Science and Technology, 2024, 13(11): 3930-3938. |
[8] | Yaxuan XIONG, Xincheng YIN, Chaoyu SONG, Jing REN, Cancan ZHANG, Yuting WU, Yulong DING. Preparation and performance evaluation of sludge incineration residue/potassium nitrate phase-change composites [J]. Energy Storage Science and Technology, 2024, 13(10): 3357-3368. |
[9] | Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. |
[10] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[11] | Yucheng DAI, Zengpeng WANG, Kaibao LIU, Jiateng ZHAO, Changhui LIU. Research progress of heat storage and heat transfer enhancement based on phase change materials [J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. |
[12] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[13] | Hang YIN, Qiang WANG, Jiahua ZHU, Zhirong LIAO, Zinan ZHANG, Ershu XU, Chao XU. Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(12): 3749-3760. |
[14] | Tan SHUI, Yuting WU, Chuan LI, Qi LI. Preparation and properties of ternary nitrate-@silica microencapsulated phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3595-3604. |
[15] | Xin ZHANG, Zuoxia XING, Qitong FU, Chao ZHANG, Libing JIANG. Multiphysics study of induction heating for solid electric heat storage devices [J]. Energy Storage Science and Technology, 2023, 12(12): 3761-3769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||