Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4436-4451.doi: 10.19799/j.cnki.2095-4239.2024.0909
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Hongkun MA(), Mingxi JI, Yulong DING(
)
Received:
2024-09-27
Revised:
2024-11-22
Online:
2024-12-28
Published:
2024-12-23
Contact:
Hongkun MA, Yulong DING
E-mail:y.ding@bham.ac.uk;h.ma.5@bham.ac.uk
CLC Number:
Hongkun MA, Mingxi JI, Yulong DING. Current status and advances in the low-to-medium temperature sorption-based thermochemical heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4436-4451.
Table 2
Summary of some typical salt hydrates[29]"
材料 | 脱水温度/℃ | 水合温度/℃ | 能量密度/(GJ/m3) | 主要优缺点 |
---|---|---|---|---|
CaCl2⋅6H2O | 156 | 32 | 3.10 | 成本低;水合湿度非常低 |
MgCl2⋅6H2O | 214 | 40 | 3.10 | 成本低;高温脱水时会产生HCl |
MgSO4⋅7H2O | 329 | 25 | 2.80 | 成本低;水合湿度非常高 |
K2CO3⋅1.5H2O | 100 | 40 | 1.30 | 材料稳定;能量密度较低 |
SrBr2∙6H2O | 80 | 30 | 2.49 | 脱水水合反应快;成本高 |
Na2S∙5H2O | 110 | 27 | 2.80 | 反应温度适宜;可能产生有毒气体H2S |
LaCl3·7H2O | 158 | 48 | 2.41 | 反应温度适宜;熔点较低 |
Table 3
Summary of typical salt hydrate based composite materials"
复合材料工作对 | 制备方法 | 脱水温度/℃ | 水合温度/℃ | 能量密度 | 循环次数 | 参考文献 |
---|---|---|---|---|---|---|
沸石13X/MgCl2 | 浸渍法 | 200 | 30 | 1368 J/g | 20 | [ |
氧化石墨烯气凝胶/MgCl2 | 水热和冷冻干燥 | — | — | 1598 J/g | — | [ |
膨胀石墨/MgSO4 | 浸渍法 | 120 | — | 718.90 J/g | — | [ |
硅胶/CaCl2 | 浸渍法 | 80 | 30 | 1080.51 J/g | 10 | [ |
活性氧化铝/MgSO4 | 浸渍法 | 200 | 25~40 | 395.13 J/g | — | [ |
膨胀石墨/SrBr2 | 湿法浸渍法 | 150 | — | 约 600 J/g | — | [ |
金属有机框架材料MOF/SrBr2 | 湿法浸渍法 | 80 | 30 | 233 kWh/m3 | 10 | [ |
蛭石/LiCl | 浸渍法 | 85 | 35 | 1890~2150 J/g | 14 | [ |
硅胶/MgSO4 | 雾化喷涂法 | 110~130 | 30~50 | 603.36 J/g | 15 | [ |
1 | LEONZIO G. Solar systems integrated with absorption heat pumps and thermal energy storages: State of art[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 492-505. DOI: 10.1016/j.rser.2016.11.117. |
2 | N'TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on long-term sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2385-2396. DOI: 10.1016/j.rser.2009.05.008. |
3 | 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115, 4124. DOI: 10.11896/j.issn.1005-023X.2018.23.012. |
YAN T, WANG W H, WANG R Z. Present status and progress of research on chemical adsorption heat storage[J]. Materials Reports, 2018, 32(23): 4107-4115, 4124. DOI: 10.11896/j.issn.1005-023X.2018.23.012. | |
4 | YANG H, TONG L G, YIN S W, et al. A review on the salt hydrate thermochemical heat storage materials[J]. Materials Reports, 2021, 35(17): 17150-17162. |
5 | KUZNIK F, JOHANNES K, OBRECHT C, et al. A review on recent developments in physisorption thermal energy storage for building applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 576-586. DOI: 10.1016/j.rser.2018.06.038. |
6 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054. |
7 | ABEDIN A H. A critical review of thermochemical energy storage systems[J]. The Open Renewable Energy Journal, 2011, 4(1): 42-46. DOI: 10.2174/1876387101004010042. |
8 | KANT K, PITCHUMANI R. Advances and opportunities in thermochemical heat storage systems for buildings applications[J]. Applied Energy, 2022, 321: 119299. DOI: 10.1016/j.apenergy. 2022.119299. |
9 | ZHANG Y N, WANG R Z. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369. DOI: 10.1016/j.ensm. 2020.02.024. |
10 | HUA W S, YAN H F, ZHANG X L, et al. Review of salt hydrates-based thermochemical adsorption thermal storage technologies[J]. Journal of Energy Storage, 2022, 56: 106158. DOI: 10.1016/j.est.2022.106158. |
11 | SCAPINO L, ZONDAG H A, VAN BAEL J, et al. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948. DOI: 10.1016/j.apenergy. 2016. 12.148. |
12 | TATSIDJODOUNG P, LE PIERRÈS N, LUO L G. A review of potential materials for thermal energy storage in building applications[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 327-349. DOI: 10.1016/j.rser.2012.10.025. |
13 | QIU Y N, YANG Y, YANG N, et al. Thermochemical energy storage using silica gel: Thermal storage performance and nonisothermal kinetic analysis[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112153. DOI: 10.1016/j.solmat. 2022.112153. |
14 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. DOI: 10.1016/j.pecs.2013.05.004. |
15 | KOLEY S, BAO H S, ROSKILLY A P, et al. Experimental parametric evaluation of adsorption characteristics for silica gel - water based open-bed system for seasonal thermal energy storage[J]. Journal of Energy Storage, 2024, 89: 111812. DOI: 10.1016/j.est.2024.111812. |
16 | METTE B, KERSKES H, DRÜCK H, et al. Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X[J]. International Journal of Heat and Mass Transfer, 2014, 71: 555-561. DOI: 10.1016/j.ijheatmasstransfer.2013.12.061. |
17 | TSO C Y, CHAO C Y H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems[J]. International Journal of Refrigeration, 2012, 35(6): 1626-1638. DOI: 10.1016/j.ijrefrig.2012.05.007. |
18 | TSO C Y, CHAO C Y H, FU S C. Performance analysis of a waste heat driven activated carbon based composite adsorbent–Water adsorption chiller using simulation model[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7596-7610. DOI: 10.1016/j.ijheatmasstransfer.2012.07.064. |
19 | LIU H Z, NAGANO K, SUGIYAMA D, et al. Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J]. International Journal of Heat and Mass Transfer, 2013, 65: 471-480. DOI: 10.1016/j.ijheatmasstransfer. 2013.06.021. |
20 | RISTIĆ A, LOGAR N Z, HENNINGER S K, et al. The performance of small-pore microporous aluminophosphates in low-temperature solar energy storage: The structure–property relationship[J]. Advanced Functional Materials, 2012, 22(9): 1952-1957. DOI: 10.1002/adfm.201102734. |
21 | MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Advanced Materials, 2011, 23(2): 249-267. DOI: 10.1002/adma.201002854. |
22 | MOULAKHNIF K, AIT OUSALEH H, SAIR S, et al. Renewable approaches to building heat: Exploring cutting-edge innovations in thermochemical energy storage for building heating[J]. Energy and Buildings, 2024, 318: 114421. DOI: 10.1016/j.enbuild. 2024.114421. |
23 | 翁立奎, 张叶龙, 姜琳, 等. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736. DOI: 10.19799/j.cnki.2095-4239.2020.0168. |
WENG L K, ZHANG Y L, JIANG L, et al. Research progress on thermochemical adsorption heat storage technology based on hydrate[J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736. DOI: 10.19799/j.cnki.2095-4239.2020.0168. | |
24 | HAO M S, LI H Z, WANG W T, et al. Research progress of thermochemical heat storage materials of hydrated salts[J]. Energy Storage Science and Technology, 2020, 9: 791. DOI: 10.19799/J.CNKI.2095-4239.2019.0223. |
25 | Corporation O C. Calcium chloride—A guide to physical properties[R/OL]. [2024-09-22] https://ingredi.com/content/pdfs/Briners_Choice_Calcium_Chloride_Physical_Properties.pdf?srsltid=AfmBOoq8h28uNkiWFsyaD3FpRqPQ_aKLgacUnbDqFLT fI8O9TToyc0yu. |
26 | PENG C, CHEN L, TANG M J. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance[J]. Fundamental Research, 2022, 2(4): 578-587. DOI: 10.1016/j.fmre.2021.11.021. |
27 | VAN ESSEN V M, COT GORES J, BLEIJENDAAL L P J, et al. Characterization of salt hydrates for compact seasonal thermochemical storage[C]//ASME 2009 3rd International Conference on Energy Sustainability Collocated with the Heat Transfer and InterPACK09 Conferences, July 19–23, 2009, San Francisco, California, USA. 2010: 825-830. DOI: 10.1115/ES2009-90289. |
28 | DONKERS P A J. Experimental study on thermochemical heat storage materials[D]. The Netherlands: Technische Universiteit Eindhoven, 2015. |
29 | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. DOI: 10.1016/j.apenergy.2017.04.080. |
30 | GLASSER L. Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs[J]. Journal of Chemical & Engineering Data, 2014, 59(2): 526-530. DOI: 10.1021/je401077x. |
31 | SÖGÜTOGLU L C, STEIGER M, HOUBEN J, et al. Understanding the hydration process of salts: The impact of a nucleation barrier[J]. Crystal Growth & Design, 2019, 19(4): 2279-2288. DOI: 10.1021/acs.cgd.8b01908. |
32 | ABRAHAMS I, VORDEMVENNE E. Strontium dibromide hexahydrate[J]. Acta Crystallographica Section C Crystal Structure Communications, 1995, 51(2): 183-185. DOI: 10.1107/s0108270194010796. |
33 | N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. DOI: 10.1016/j.apenergy.2014.02.053. |
34 | LAHMIDI H, MAURAN S, GOETZ V. Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J]. Solar Energy, 2006, 80(7): 883-893. DOI: 10.1016/j.solener.2005.01.014. |
35 | MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction[J]. Solar Energy, 2008, 82(7): 623-636. DOI: 10.1016/j.solener.2008.01.002. |
36 | MARIAS F, NEVEU P, TANGUY G, et al. Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode[J]. Energy, 2014, 66: 757-765. DOI: 10.1016/j.energy.2014.01.101. |
37 | MICHEL B, MAZET N, NEVEU P. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance[J]. Applied Energy, 2014, 129: 177-186. DOI: 10.1016/j.apenergy.2014.04.073. |
38 | ROELANDS M, CUYPERS R, KRUIT K D, et al. Preparation & characterization of sodium sulfide hydrates for application in thermochemical storage systems[J]. Energy Procedia, 2015, 70: 257-266. DOI: 10.1016/j.egypro.2015.02.122. |
39 | JIANG J J, CHAN A, ALI S, et al. Hydrogen sulfide—mechanisms of toxicity and development of an antidote[J]. Scientific Reports, 2016, 6: 20831. DOI: 10.1038/srep20831. |
40 | NASH D B. Infrared reflectance spectra of Na2S with contaminant Na2CO3: Effects of adsorbed H2O and CO2 and relation to studies of io[J]. Icarus, 1988, 74(2): 365-368. DOI: 10.1016/0019-1035(88)90049-8. |
41 | WAGMAN D, EVANS W, PARKER V, et al. The NBS tables of chemical thermodynamic propertiesselected values for inorganic and C[J]. Joural of Physical Chemical Reference Data, 1982, 11: 2-145. |
42 | YU N, WANG R Z, LU Z S, et al. Evaluation of a three-phase sorption cycle for thermal energy storage[J]. Energy, 2014, 67: 468-478. DOI: 10.1016/j.energy.2013.12.044. |
43 | LIU X Y, WANG W W, XIE S T, et al. Performance characterization and application of composite adsorbent LiCl@ACFF for moisture harvesting[J]. Scientific Reports, 2021, 11(1): 14412. DOI: 10.1038/s41598-021-93784-7. |
44 | YU N, WANG R Z, LU Z S, et al. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2015, 84: 660-670. DOI: 10.1016/j.ijheatmasstransfer.2015.01.065. |
45 | LIU H, EDEM N K, NOLWENN L P, et al. Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples[J]. Energy Conversion and Management, 2011, 52(6): 2427-2436. DOI: 10.1016/j.enconman.2010.12.049. |
46 | WANG H M, LIU X, LIU X, et al. Fluidisable mesoporous silica composites for thermochemical energy storage[J]. Energy, 2023, 275: 127255. DOI: 10.1016/j.energy.2023.127255. |
47 | CHAO J W, XU J X, BAI Z Y, et al. Integrated heat and cold storage enabled by high-energy-density sorption thermal battery based on zeolite/MgCl2 composite sorbent[J]. Journal of Energy Storage, 2023, 64: 107155. DOI: 10.1016/j.est.2023.107155. |
48 | ZHANG Q Y, WU Y F, DONG S H, et al. Development of activated carbon/CaCl2 composites for seasonal thermochemical energy storage: Effect of pore structure[J]. Journal of Energy Storage, 2024, 97: 112697. DOI: 10.1016/j.est.2024.112697. |
49 | CHEN Z W, ZHANG Y N, ZHANG Y, et al. A study on vermiculite-based salt mixture composite materials for low-grade thermochemical adsorption heat storage[J]. Energy, 2023, 278: 127986. DOI: 10.1016/j.energy.2023.127986. |
50 | CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240. DOI: 10.1016/j.enconman.2018.04.031. |
51 | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. DOI: 10.1016/j.energy.2019.07.076. |
52 | ZHOU H, ZHANG D. Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2⋅6H2O composites[J]. Solar Energy, 2019, 184: 202-208. DOI: 10.1016/j.solener.2019.03.076. |
53 | MIAO Q, ZHANG Y L, JIA X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439. DOI: 10.1016/j.solener.2021.03.008. |
54 | COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. DOI: 10.1016/j.solener. 2017.08.034. |
55 | D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 25: 100881. DOI: 10.1016/j.est.2019.100881. |
56 | BRANCATO V, GORDEEVA L G, SAPIENZA A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2019, 105: 92-100. DOI: 10.1016/j.ijrefrig. 2018. 08.006. |
57 | YANG H, WANG C C, ZHANG Y L, et al. Experimental investigation of a thermochemical energy storage system based on MgSO4-silica gel for building heating: Adsorption/desorption performance testing and system optimization[J]. Energy Conversion and Management, 2024, 301: 118000. DOI: 10.1016/j.enconman.2023.118000. |
58 | 葛继翔, 纪明希, 丁玉龙, 等. 水合盐热化学反应器参数优化与供暖应用案例分析[J]. 储能科学与技术, 2023, 12(12): 3799-3807. DOI: 10.19799/j.cnki.2095-4239.2023.0686. |
GE J X, JI M X, DING Y L, et al. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application[J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. DOI: 10.19799/j.cnki.2095-4239. 2023.0686. | |
59 | SOLÉ A, MARTORELL I, CABEZA L F. State of the art on gas–solid thermochemical energy storage systems and reactors for building applications[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 386-398. DOI: 10.1016/j.rser.2015.03.077. |
60 | 罗伊默, 芮金金, 徐薇, 等. 热化学储热反应器内水合盐物性调控及传热传质优化研究进展[J]. 储能科学与技术, 2021, 10(4): 1273-1284. DOI: 10.19799/j.cnki.2095-4239.2021.0026. |
LUO Y M, RUI J J, XU W, et al. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor[J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. DOI: 10.19799/j.cnki.2095-4239.2021.0026. | |
61 | AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334. DOI: 10.1016/j.enconman.2016.05.045. |
62 | LI W, KLEMEŠ J J, WANG Q W, et al. Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111846. DOI: 10.1016/j.rser. 2021.111846. |
63 | FARCOT L, LE PIERRÈS N, FOURMIGUÉ J F. Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J]. Journal of Energy Storage, 2019, 26: 101009. DOI: 10.1016/j.est.2019.101009. |
64 | WYTTENBACH J, BOUGARD J, DESCY G, et al. Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage[J]. Applied Energy, 2018, 230: 803-815. DOI: 10.1016/j.apenergy.2018.09.008. |
65 | CLARK R J, MEHRABADI A, FARID M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J]. Journal of Energy Storage, 2020, 27: 101145. DOI: 10.1016/j.est.2019.101145. |
66 | MARIE L F, LANDINI S, BAE D, et al. Advances in thermochemical energy storage and fluidised beds for domestic heat[J]. Journal of Energy Storage, 2022, 53: 105242. DOI: 10.1016/j.est.2022.105242. |
67 | ZONDAG H, KIKKERT B, SMEDING S, et al. Prototype thermochemical heat storage with open reactor system[J]. Applied Energy, 2013, 109: 360-365. DOI: 10.1016/j.apenergy. 2013.01.082. |
68 | LI T X, WANG R Z, KIPLAGAT J K, et al. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy[J]. Energy, 2013, 50: 454-467. DOI: 10.1016/j.energy.2012.11.043. |
69 | FOPAH-LELE A, ROHDE C, NEUMANN K, et al. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J]. Energy, 2016, 114: 225-238. DOI: 10.1016/j.energy.2016.08.009. |
70 | LI W, ZHANG L J, LING X. Thermo-economic assessment of salt hydrate-based thermochemical heat transformer system: Heat upgrade for matching domestic hot water production[J]. Energy Conversion and Management, 2023, 277: 116644. DOI: 10.1016/j.enconman.2022.116644. |
71 | BÖHM H, LINDORFER J. Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials[J]. Energy, 2019, 179: 1246-1264. DOI: 10.1016/j.energy.2019.04.177. |
72 | TRAN T V, ONI A O, GEMECHU E, et al. Developing a techno-economic model to evaluate the cost performance of a zeolite 13X-based space heating system[J]. Energy Conversion and Management, 2021, 244: 114325. DOI: 10.1016/j.enconman. 2021.114325. |
73 | FUJII S, KANEMATSU Y, KIKUCHI Y, et al. Techno economic analysis of thermochemical energy storage and transport system utilizing "zeolite boiler": Case study in Sweden[J]. Energy Procedia, 2018, 149: 102-111. DOI: 10.1016/j.egypro. 2018. 08.174. |
[1] | Yaokang LI, Haidong YANG, Kangkang XU, Zhaoyu LAN, Runnan ZHANG. Temperature prediction of lithium batteries based on weighted UMAP and improved BLS [J]. Energy Storage Science and Technology, 2024, 13(9): 3006-3015. |
[2] | Yi ZHONG, Yan LENG, Sihui CHEN, Peiyi LI, Zhi ZOU, Yang LIU, Jiayu WAN. Accelerating battery research with retrieval-augmented large language models: Present and future [J]. Energy Storage Science and Technology, 2024, 13(9): 3214-3225. |
[3] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[4] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[5] | Chang LI, Weibo ZHENG, Shuai ZHU, Yunwen JIANG, Pingwen MING. Research on the dynamic process of a fuel cell air system based on a model [J]. Energy Storage Science and Technology, 2024, 13(8): 2580-2588. |
[6] | Wentao ZHU, Yang ZHOU, Yimin XU, Tao SHI. Application and optimization of battery energy storage technology in new energy generation system [J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. |
[7] | Yuhan DAI, Chun LIU, Peng ZHOU, Junpeng ZHOU, Siyu XIANG. Application and research progress of energy storage technology in power systems under the dual carbon background [J]. Energy Storage Science and Technology, 2024, 13(8): 2772-2774. |
[8] | Zheng KOU, Zhenlong WANG. Effect analysis of energy storage equipment in the field of power Internet of Things [J]. Energy Storage Science and Technology, 2024, 13(8): 2785-2787. |
[9] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
[10] | Xiaojun ZHAO, Yingchao WANG, Meng CHEN, Peng YANG, Zhanwang AN, Jianli LIU, Di WU. Reliability analysis of the module busbars of power battery systems [J]. Energy Storage Science and Technology, 2024, 13(7): 2450-2458. |
[11] | Lulu NIE, Lige YUAN. Application and optimization of intelligent electronic control system in low temperature battery management [J]. Energy Storage Science and Technology, 2024, 13(7): 2432-2434. |
[12] | Siyuan HUANG, Chen WANG, Ting LIANG, Zhu JIANG, Jiajing LI, Xiaohui SHE, Xiaosong ZHANG. Research on optimal configuration for integrated energy system with liquid air energy storage combined heat and power supply [J]. Energy Storage Science and Technology, 2024, 13(6): 1929-1939. |
[13] | Yangyang XIONG, Aiqing YU, Yufei WANG, Hua XUE. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties [J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899. |
[14] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[15] | Lie FAN, Yongjie XING, Fang LIU, Yaxuan XIONG. Thermal storage system optimization toward the economic viability of heating systems in Yanqing Winter Olympics Village [J]. Energy Storage Science and Technology, 2024, 13(6): 2057-2067. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||