Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4452-4463.doi: 10.19799/j.cnki.2095-4239.2024.0834
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Yujie ZHANG1(), Jiangyun CHEN2, Jianqiang LI3(
), Yanjun DAI1(
)
Received:
2024-09-06
Revised:
2024-09-22
Online:
2024-12-28
Published:
2024-12-23
Contact:
Jianqiang LI, Yanjun DAI
E-mail:zhang.yujie@sjtu.edu.cn;jianqiangli@ustb.edu.cn;yjdai@sjtu.edu.cn
CLC Number:
Yujie ZHANG, Jiangyun CHEN, Jianqiang LI, Yanjun DAI. China Thermal Energy Storage Industry Development Report (2024)—Industry technologies, development status, and model projects[J]. Energy Storage Science and Technology, 2024, 13(12): 4452-4463.
Table 1
Relevant policies for TES industry in China"
发布时间 | 发布单位 | 政策名称 | 主要内容 | 参考文献 |
---|---|---|---|---|
2023年 | 国家发展改革委、国家能源局 | 《关于加强新形势下电力系统稳定工作的指导意见》 | 充分发挥电化学储能、压缩空气储能、飞轮储能、氢储能、热(冷)储能等各类新型储能的优势,结合应用场景构建储能多元融合发展模式,提升安全保障水平和综合效率 | [ |
2022年 | 工业和信息化部等 | 《关于深入推进黄河流域工业绿色发展的指导意见》 | 鼓励青海、宁夏等省区发展储热熔盐和超级电容技术,培育新型电力储能装备 | [ |
2022年 | 科技部等 | 《科技支撑碳达峰碳中和实施方案》 | 研发高可靠性、低成本太阳能热发电与热电联产技术,突破高温吸热传热储热关键材料与装备等 | [ |
2022年 | 国家发展改革委、国家能源局 | 《“十四五”新型储能发展实施方案》 | 氢储能、热(冷)储能等长时间尺度储能技术将取得突破;鼓励发展电供暖与蓄热储能相结合供暖模式 | [ |
Table 2
Demonstration projects of TES technologies in the building sector[33]"
示范项目名称 | 地点 | 蓄热技术 | 热源 |
---|---|---|---|
华润生命科学园相变蓄热储能供暖示范项目 | 北京 | 相变蓄热 | 谷电 |
广州华润创智园动态冰蓄冷中央空调供冷站示范项目 | 广州 | 相变蓄冷(冰) | 谷电 |
天津水游城商业中心谷电相变蓄热储能供暖示范项目 | 天津 | 相变蓄热 | 谷电 |
北京黄村镇政府大楼相变蓄热储能示范项目 | 北京 | 相变蓄热 | 谷电+电锅炉 |
辽宁邮电智慧相变蓄热储能系统示范项目 | 沈阳 | 相变蓄热 | 谷电 |
远能乌兰巴托(蒙古国)某幼儿园供暖项目 | 蒙古国 | 相变蓄热 | 太阳能 |
张家口凯博风尚商城电热式固体蓄热储能供热示范项目 | 张家口 | 显热蓄热 | 谷电 |
内蒙古赤峰市德润排水有限公司固体电蓄热供暖示范项目 | 赤峰 | 显热蓄热 | 谷电 |
赤峰市党政综合楼供暖示范项目 | 赤峰 | 显热蓄热 | 谷电 |
新疆阿勒泰市阿苇滩镇谷电固态蓄热供暖示范项目 | 阿勒泰 | 显热蓄热 | 谷电 |
灵丘县40万kW风电供暖示范项目 | 大同 | 显热蓄热 | 弃风电力 |
一汽大众汽车有限公司天津工厂水蓄冷示范项目 | 天津 | 显热蓄冷(水) | 谷电 |
Table 4
Demonstration projects of 50 MW and above solar thermal power in China(grid-connected)[50]"
示范项目名称 | 地点 | 并网时间 | 蓄热材料 | 蓄热时长/h |
---|---|---|---|---|
首航高科敦煌100 MW 熔盐塔式光热电站示范项目 | 甘肃 | 2018年 | 熔盐 | 11 |
中广核德令哈50 MW 槽式光热电站示范项目 | 青海 | 2018年 | 熔盐 | 9 |
青海中控德令哈50 MW 塔式光热电站示范项目 | 青海 | 2018年 | 熔盐 | 7 |
中电建共和50 MW 塔式光热电站示范项目 | 青海 | 2019年 | 熔盐 | 6 |
中国建能哈密50 MW塔式光热电站示范项目 | 新疆 | 2019年 | 熔盐 | 13 |
鲁能海西50 MW塔式光热电站示范项目 | 青海 | 2019年 | 熔盐 | 12 |
鲁能格尔木多能互补工程50 MW 塔式光热电站示范项目 | 青海 | 2019年 | 熔盐 | 12 |
兰州大成敦煌50 MW线菲式光热电站示范项目 | 甘肃 | 2019年 | 熔盐 | 15 |
中船乌拉特100 MW 槽式光热电站示范项目 | 内蒙古 | 2020年 | 熔盐 | 10 |
玉门鑫能50 MW 光热电站示范项目 | 甘肃 | 2021年 | 熔盐 | 9 |
中核玉门“光热+”100 MW光热储能示范项目 | 甘肃 | 2024年 | 熔盐 | 8 |
Table 6
Demonstration projects of peak shaving in power sector[1, 33, 55-58]"
示范项目名称 | 地点 | 建成 时间 | 蓄热 材料 | 蓄热量 /MWh | 运行效果 |
---|---|---|---|---|---|
吉林江南热电基于储热技术的热电联产机组调频调峰改造示范项目 | 吉林 | 2017年 | 水 | 1302 | 调峰时刻提高热网温度4 ℃ |
大唐辽源热电厂供热机组灵活性调峰示范项目 | 吉林 | 2018年 | 水 | 1188 | 热电解耦能力达到设计值的106.25% |
华能丹东电厂热电解耦改造储热罐项目 | 辽宁 | 2020年 | 水 | 1400 | 调峰容量从70%的额定负荷上升到85% |
江苏国信靖江电厂熔盐储能调峰供热示范项目 | 江苏 | 2022年 | 熔盐 | 75 | 机组调峰容量达到75%的额定负荷 |
魏家峁煤电机组熔盐储热示范项目 | 内蒙古 | 2023年 | 熔盐、水 | 80 | 年降低CO2排放 |
华能德州电厂熔盐储能调峰示范项目 | 山东 | 2024年 | 熔盐 | 180 | 集成熔盐蒸气蓄热和电蓄热功能 |
华源热电厂熔盐储能辅调频调峰示范项目 | 山东 | 2024年 | 熔盐 | 100 | 拓宽火电机组灵活调节容量约85 MW |
Table 7
Demonstration projects in the industrial sector[33,62-66]"
示范项目名称 | 地点 | 蓄热材料 | 热源 | 终端用途 |
---|---|---|---|---|
绍兴绿电熔盐储能项目 | 绍兴 | 熔盐 | 谷电(部分电来源于风电光电) | 蒸汽供应 |
常州市卿卿针织厂谷电蒸汽蓄热锅炉项目 | 常州 | 水(相变) | 谷电 | 蒸汽供应 |
北京热力熔盐储热供蒸汽示范项目 | 北京 | 熔盐 | 谷电 | 蒸汽供应 |
习水县小糊涂仙酒厂固体蓄热式能源示范项目 | 贵州 | 固体蓄热材料 | 谷电、工业废热 | 蒸汽供应 |
西子航空园“光伏发电+熔盐储热+液流储能”示范项目 | 杭州 | 熔盐 | 太阳能 | 蒸汽供应 |
华业阳光内蒙古赤峰工业余热加太阳能蓄热供暖示范项目 | 赤峰 | 土壤 | 太阳能、工业余热 | 供暖 |
江苏金合能源科技有限公司橡胶制品生产导热油示范项目 | 浙江等 | 固体蓄热材料 | 谷电 | 橡胶制品用热 |
华北油田 “储热+光热一体化应用装置”示范项目 | 内蒙古 | 混凝土 | 太阳能 | 油田供热 |
1 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
2 | KOÇAK B, FERNANDEZ A I, PAKSOY H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209: 135-169. DOI: 10.1016/j.solener.2020.08.081. |
3 | IDTechEx Reports. Thermal energy storage market size, share, and trends 2022 to 2032[R]. Cambridge: IDTechEx,2023. |
4 | International Renewable Energy Agency. Innovation outlook: Thermal energy storage[R]. International Renewable Energy Agency, 2020. https://www.irena.org/publications/ 2020/Nov/Innovation-outlook-Thermal-energy-storage. |
5 | ABEDIGAMBA O P, MNDEME F S, MAWIRE A, et al. Thermo-physical properties and thermal energy storage performance of two vegetable oils[J]. Journal of Energy Storage, 2023, 61: 106774. DOI: 10.1016/j.est.2023.106774. |
6 | WANG Y Y, LU Y W, WANG Y Q, et al. Investigation on thermal performance of quinary nitrate/nitrite mixed molten salts with low melting point for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2024, 270: 112803. DOI: 10.1016/j.solmat.2024.112803. |
7 | BHATNAGAR P, SIDDIQUI S, SREEDHAR I, et al. Molten salts: Potential candidates for thermal energy storage applications[J]. International Journal of Energy Research, 2022, 46(13): 17755-17785. DOI: 10.1002/er.8441. |
8 | LIU J X, CHANG Z C, WANG L B, et al. Exploration of basalt glasses as high-temperature sensible heat storage materials[J]. ACS Omega, 2020, 5(30): 19236-19246. DOI: 10.1021/acsomega.0c02773. |
9 | ZHANG J C, GUO Z, ZHU Y Z, et al. Preparation and characterization of novel low-cost sensible heat storage materials with steel slag[J]. Journal of Energy Storage, 2024, 76: 109643. DOI: 10.1016/j.est.2023.109643. |
10 | SEYITINI L, BELGASIM B, ENWEREMADU C C. Solid state sensible heat storage technology for industrial applications–A review[J]. Journal of Energy Storage, 2023, 62: 106919. DOI: 10.1016/j.est.2023.106919. |
11 | 胡自锋, 徐耀祖, 段振云, 等. 新型蓄热体结构蓄热过程分析[J]. 储能科学与技术, 2023, 12(1): 165-171. DOI: 10.19799/j.cnki.2095-4239.2022.0485. |
HU Z F, XU Y Z, DUAN Z Y, et al. Analysis of the heat storage process of a new heat storage body structure[J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. DOI: 10.19799/j.cnki.2095-4239.2022.0485. | |
12 | European Association for Storage of Energy. Energy storage targets 2030 and 2050[R]. European Association for Storage of Energy, 2022. https://ease-storage.eu/publication/energy-storage-targets-2030-and-2050 |
13 | HE X, WANG H R, GE G Q, et al. Thermodynamic analysis of a hybrid system combining compressed air energy storage and pressurized water thermal energy storage[J]. Applied Thermal Engineering, 2023, 229: 120568. DOI: 10.1016/j.applthermaleng. 2023.120568. |
14 | ROPER R, HARKEMA M, SABHARWALL P, et al. Molten salt for advanced energy applications: A review[J]. Annals of Nuclear Energy, 2022, 169: 108924. DOI: 10.1016/j.anucene.2021.108924. |
15 | TAWALBEH M, KHAN H A, AL-OTHMAN A, et al. A comprehensive review on the recent advances in materials for thermal energy storage applications[J]. International Journal of Thermofluids, 2023, 18: 100326. DOI: 10.1016/j.ijft.2023.100326. |
16 | SHARSHIR S W, JOSEPH A, ELSHARKAWY M, et al. Thermal energy storage using phase change materials in building applications: A review of the recent development[J]. Energy and Buildings, 2023, 285: 112908. DOI: 10.1016/j.enbuild. 2023.112908. |
17 | 刘云汉, 王亮, 张双, 等. 基于圆柱封装单元的水合盐相变储热填充床的储释特性实验研究[J]. 储能科学与技术, 2024, 13(8): 2623-2633. DOI: 10.19799/j.cnki.2095-4239.2024.0187. |
LIU Y H, WANG L, ZHANG S, et al. Experimental study on heat storage and discharge characteristics of packed bed based on hydrated salt using cylindrical encapsulation units[J]. Energy Storage Science and Technology, 2024, 13(8): 2623-2633. DOI: 10.19799/j.cnki.2095-4239.2024.0187. | |
18 | WANG X Z, REPAKA D V M, SUWARDI A, et al. Thermal and electrical properties of liquid metal gallium during phase transition[J]. Transactions of Tianjin University, 2023, 29(3): 209-215. DOI: 10.1007/s12209-023-00357-y. |
19 | FREEMAN T B, FOSTER K E O, TROXLER C J, et al. Advanced materials and additive manufacturing for phase change thermal energy storage and management: A review[J]. Advanced Energy Materials, 2023, 13(24): 2204208. DOI: 10.1002/aenm. 202204208. |
20 | GENG L, CUI J P, ZHANG C L, et al. Chemistry in phase change energy storage: Properties regulation on organic phase change materials by covalent bond modification[J]. Chemical Engineering Journal, 2024, 495: 153359. DOI: 10.1016/j.cej.2024.153359. |
21 | 田曦, 熊亚选, 任静, 等. 碳捕捉对废弃混凝土复合相变储热材料性能的影响[J]. 储能科学与技术, 2023, 12(12): 3709-3719. DOI: 10.19799/j.cnki.2095-4239.2023.0685. |
TIAN X, XIONG Y X, REN J, et al. Effect of carbon sequestration on the performance of waste concrete shape-stable phase change composites[J]. Energy Storage Science and Technology, 2023, 12(12): 3709-3719. DOI: 10.19799/j.cnki.2095-4239.2023.0685. | |
22 | 许荣玉, 陆海涛, 郭荷渡, 等. 低熔点四元硝酸盐基定型复合相变材料的制备与研究[J]. 储能科学与技术, 2024, 13(5): 1451-1459. DOI: 10.19799/j.cnki.2095-4239.2023.0840. |
XU R Y, LU H T, GUO H D, et al. Form-stable quaternary nitrate salt-based composite phase change material with low melting temperature for low-mediumtemperature thermal energy storage[J]. Energy Storage Science and Technology, 2024, 13(5): 1451-1459. DOI: 10.19799/j.cnki.2095-4239.2023.0840. | |
23 | Abdullah, KOUSHAEIAN M, SHAH N A, et al. A review on thermochemical seasonal solar energy storage materials and modeling methods[J]. International Journal of Air-Conditioning and Refrigeration, 2024, 32(1): 1. DOI: 10.1007/s44189-023-00044-6. |
24 | WU S F, WANG L W, AN G L, et al. Excellent ammonia sorption enabled by metal-organic framework nanocomposites for seasonal thermal battery[J]. Energy Storage Materials, 2023, 54: 822-835. DOI: 10.1016/j.ensm.2022.11.020. |
25 | AIRÒ FARULLA G, CELLURA M, GUARINO F, et al. A review of thermochemical energy storage systems for power grid support[J]. Applied Sciences, 2020, 10(9): 3142. DOI: 10.3390/app10093142. |
26 | 徐云轩, 林尚超, 闫君, 等. MgCO3/MgO热化学储热的碳酸化反应动力学机理研究[J]. 工程热物理学报, 2023, 44(2): 468-474. |
XU Y X, LIN S C, YAN J, et al. Kinetic mechanism of carbonation reaction of MgCO3/MgO thermochemical energy storage[J]. Journal of Engineering Thermophysics, 2023, 44(2): 468-474. | |
27 | KUR A, DARKWA J, CALAUTIT J, et al. Solid-gas thermochemical energy storage materials and reactors for low to high-temperature applications: A concise review[J]. Energies, 2023, 16(2): 756. DOI: 10.3390/en16020756. |
28 | GAO N, DENG L S, LI J, et al. Effects of porous carbon materials on heat storage performance of CaCl2 hydrate for low-grade thermal energy[J]. RSC Advances, 2023, 13(46): 32567-32581. DOI: 10.1039/d3ra04859d. |
29 | WANG W, SHUAI Y, YANG J Y, et al. Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device[J]. Renewable Energy, 2023, 218: 119364. DOI: 10.1016/j.renene.2023.119364. |
30 | HAN X Y, WANG L, GE Z W, et al. Al- and Cr-doped Co3O4/CoO redox materials for thermochemical energy storage in concentrated solar power plants[J]. Solar Energy Materials and Solar Cells, 2023, 260: 112475. DOI: 10.1016/j.solmat. 2023.112475. |
31 | Long Duration Energy Storge Council, McKinsey & Company. Net-zero heat: Long-duration energy storage to accelerate energy system decarbonization[R]. Long Duration Energy Storge Council, McKinsey & Company, 2022. |
32 | 中关村产业技术联盟. 新型储能产业发展现状及趋势报告[R]. 北京:中关村产业技术联盟, 2024. |
China Energy Storage Alliance. Report on the current status and trends of the new energy storage industry[R]. Beijing: China Energy Storage Alliance, 2024. | |
33 | 中国建筑金属结构协会. 中国蓄热储能产业发展报告(2024)[R]. 北京: 中国建筑金属结构协会, 2024. |
China Construction Metal Structure Association. China thermal energy storage development report (2024)[R]. Beijing: China Construction Metal Structure Association, 2024. | |
34 | 中华人民共和国国家发展改革委, 国家能源局. "十四五"新型储能发展实施方案[S]. 北京: 发展改革委, 2022. |
National Development and Reform Commission, National Energy Administration of the People's Republic of China. Implementation plan for the development of new energy storage during the 14th Five Year Plan Period[S]. Beijing: Development and Reform Commission, 2022. | |
35 | 中华人民共和国国家发展改革委, 国家能源局. 关于加强新形势下电力系统稳定工作的指导意见[S]. 北京: 国家发展改革委, 2023.National Development and Reform Commission, National Energy Administration of the People's Republic of China. Guidance on strengthening the stability of the power system under new circumstances[S]. Beijing: National Development and Reform Commission, 2023. |
36 | 中华人民共和国工业和信息化部, 发展改革委, 住房城乡建设部等. 关于深入推进黄河流域工业绿色发展的指导意见[S]. 北京: 工业和信息化部, 2022. Ministry of Industry and Information Technology, National Development and Reform Commission, Ministry of Housing and Urban Rural Development of the People's Republic of China, et al. Guiding opinions on deepening the green development of industry in the Yellow River Basin[S]. Beijing: Ministry of Industry and Information Technology, 2022. |
37 | 中华人民共和国科技部, 发展改革委, 工业和信息化部等. 科技支撑碳达峰碳中和实施方案(2022—2030年)[S]. 北京: 科技部, 2022.Ministry of Science and Technology, National Development and Reform Commission, Ministry of Industry and Information Technology of the People's Republic of China, et al. Implementation plan for carbon peak and carbon neutrality supported by technology (2022-2030)[S]. Beijing: Ministry of Science and Technology, 2022. |
38 | JOUHARA H, ŻABNIEŃSKA-GÓRA A, KHORDEHGAH N, et al. Latent thermal energy storage technologies and applications: A review[J]. International Journal of Thermofluids, 2020, 5: 100039. DOI: 10.1016/j.ijft.2020.100039. |
39 | International Energy Agency. Tracking clean energy progress 2023[R]. Abu Dhabi: International Energy Agency, 2023. |
40 | HEIER J, BALES C, MARTIN V. Combining thermal energy storage with buildings–A review[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1305-1325. DOI: 10.1016/j.rser.2014.11.031. |
41 | 国家太阳能光热产业技术创新战略联盟. 熔盐蓄热供热示范工程已成功运行四个采暖季!北京工业大学为技术支持方[EB/OL]. [2022-10-25]. http://www.cnste.org/html/xiangmu/2022/1025/9678.html. |
China Solar Thermal Alliance. Molten salt thermal storage heating demonstration project has successfully operated for four heating seasons! Beijing University of Technology as the technical support party[EB/OL]. [2022-10-25]. lhttp://www.cnste.org/html/xiangmu/2022/1025/9678.html. | |
42 | 国家太阳能光热产业技术创新战略联盟. 校企联动, 共建熔融盐储能推广示范[EB/OL]. [2019-12-19]. http://www.cnste.org/html/jiaodian/2019/1219/5852.html. |
China Solar Thermal Alliance. University-enterprise collaboration to build a molten salt energy storage promotion and demonstration project[EB/OL]. [2019-12-19]. http://www.cnste.org/html/jiaodian/2019/1219/5852.html. | |
43 | 祝捷, 纪禹. 冷热双蓄能源站:产业园用能高效经济[EB/OL]. [2022-08-09]. https://news.bjx.com.cn/html/20220809/1247168.shtml. |
ZHU J, JI Y. Cold and hot dual-storage energy station: Efficient and economic energy use in industrial parks[EB/OL]. [2022-08-09]. https://news.bjx.com.cn/html/20220809/1247168.shtml. | |
44 | 搜狐. 冬天蓄热, 夏天蓄冷, 这些冷热双蓄供能项目你都了解吗?[EB/OL]. [2022-03-17]. https://www.sohu.com/a/530586952_121123906. |
Souhu. Do you understand these dual-energy storage projects that store heat in winter and cold in summer?[EB/OL]. [2022-03-17]. https://www.sohu.com/a/530586952_121123906. | |
45 | 江苏金合能源科技有限公司. 【清洁供暖 蓄能先行】我公司助力青海省同德县打造清洁供暖示范县[EB/OL]. [2023-11-09]. http://www.jinhe-energy.com/?gongsi/127.html. |
JiangSu JinHe Energy Technology Co., Ltd. [Clean Heating, Thermal Storage First] Our company assists Tongde County, Qinghai Province in building a clean heating demonstration county[EB/OL]. [2023-11-09]. http://www.jinhe-energy.com/?gongsi/127.html. | |
46 | 中国大唐能源有限公司. 青海公司: 完成两县首个清洁能源供暖季任务[EB/OL]. [2024-05-11]. https://www.china-cdt.com/dtwz/dtwz_site_HTML/xwzx/xtdt/2024/dtwz_site-xwzx_xtdt-20240511-DBtF.html. |
China Datang Corporation Co., Ltd. Qinghai Company: Completes the first clean energy heating season task for two counties[EB/OL]. [2024-05-11]. https://www.china-cdt.com/dtwz/dtwz_site_HTML/xwzx/xtdt/2024/dtwz_site-xwzx_xtdt-20240511-DBtF.html. | |
47 | 日出东方控股股份有限公司. 大型太阳能集中供暖案例展示 [EB/OL]. https://www.solareast.com/xcgstyngnal. |
Solareast Holdings Co., Ltd. Large-scale solar central heating case display[EB/OL]. https://www.solareast.com/xcgstyngnal. | |
48 | 国家太阳能光热产业技术创新战略联盟. 青海盐湖2万吨碳酸锂项目太阳能供热工程全部建成投产[EB/OL]. [2024-06-30]. http://www.cnste.org/html/xiangmu/2024/0630/13351.html. |
China Solar Thermal Alliance. Qinghai salt lake 20000-ton lithium carbonate project solar heating engineering fully completed and put into operation[EB/OL]. [2024-06-30]. http://www.cnste.org/html/xiangmu/2024/0630/13351.html. | |
49 | DING W J, BAUER T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334-347. DOI: 10.1016/j.eng.2020.06.027. |
50 | 国家太阳能光热产业技术创新战略联盟. 中国太阳能热发电行业蓝皮书2023[R]. 北京: 国家太阳能光热产业技术创新战略联盟. 2024. |
China Solar Thermal Alliance. China solar thermal power industry blue book 2023[R]. Beijing: China solar thermal plliance. 2024. | |
51 | 万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
WAN M Z, WANG Y Y, LI J, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. | |
52 | 国家太阳能光热产业技术创新战略联盟. 山东肥城国际首套300MW先进压缩空气储能国家示范项目阵列化蓄热装置安装完成[EB/OL]. [2024-01-31]. http://www.cnste.org/html/xiangmu/2024/0131/12249.html. |
China Solar Thermal Alliance. Shandong Feicheng international first set of 300MW advanced compressed air energy storage national demonstration project array type thermal storage device installation completed[EB/OL]. [2024-01-31]. http://www.cnste.org/html/xiangmu/2024/0131/12249.html. | |
53 | 中国科学院理化技术研究所. 理化所在新型二氧化碳储能研究方面取得重要进展[EB/OL]. [2024-06-05]. https://ipc.cas.cn/xwzx/kyjz/202406/t20240605_7185056.html. |
Technical Institute of Physics and Chemistry CAS. Important progress in new carbon dioxide energy storage research of institute[EB/OL]. [2024-06-05]. https://ipc.cas.cn/xwzx/kyjz/202406/t20240605_7185056.html. | |
54 | 时代储能网. 全球首套二氧化碳储能示范系统成功并网发电[EB/OL]. [2024-01-07]. https://www.eraes.com.cn/newsinfo/6734837.html. |
Era Energy Storage Network. The world's first carbon dioxide energy storage demonstration system successfully grid-connected and generates electricity[EB/OL]. [2024-01-07]. https://www.eraes.com.cn/newsinfo/6734837.html. | |
55 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
56 | 中国化工报. 首个"汽电"联合加热熔盐储能项目投运[EB/OL]. [2024-07-09]. http://www.ccin.com.cn/detail/75882204b2cdc448f6459ccebc405308/news. |
China Chemical News. The first "steam-electric" combined heating molten salt energy storage project is operational[EB/OL]. [2024-07-09]. http://www.ccin.com.cn/detail/75882204b2cdc448f6459ccebc405308/news. | |
57 | 孙岳. 性能更灵动运行变聪明[EB/OL]. [2012-12-11]. http://paper.people.com.cn/zgnyb/html/2017-12/11/content_1823383.htm. |
Sun Y. More agile performance and smarter operation[EB/OL]. [2012-12-11]. http://paper.people.com.cn/zgnyb/html/2017-12/11/content_1823383.htm. | |
58 | 国家太阳能光热产业技术创新战略联盟. 全国首个!华能德州电厂火电机组调峰调频模块化熔盐储能项目成功商运[EB/OL]. [2024-09-02]. http://www.cnste.org/html/xiangmu/2024/0902/13748.html. |
China Solar Thermal Alliance. The first in the nation! The modular molten salt energy storage project for peak load regulation and frequency modulation of HuaNeng in DeZhou Power Plant's thermal power units has successfully entered commercial operation[EB/OL]. [2024-09-02]. http://www.cnste.org/html/xiangmu/2024/0902/13748.html. | |
59 | 国家统计局. 中国统计年鉴2023[M]. 北京: 中国统计出版社, 2023.National Bureau of Statistics. China statistical yearbook 2023[M]. Beijing: China Statistics Press, 2023. |
60 | 陈彬, 杨延春, 张建海. 低温工业余热回收利用典型场景与应用案例[J]. 节能与环保, 2023(1): 87-88. DOI: 10.3969/j.issn.1009-539X.2023.01.031. |
CHEN B, YANG Y C, ZHANG J H. Typical scenarios and applications of low-temperature industrial waste heat recycling[J]. Energy Conservation & Environmental Protection, 2023(1): 87-88. DOI: 10.3969/j.issn.1009-539X.2023.01.031. | |
61 | ALI H M, REHMAN T U, ARıCı M, et al. Advances in thermal energy storage: Fundamentals and applications[J]. Progress in Energy and Combustion Science, 2024, 100: 101109. DOI: 10.1016/j.pecs.2023.101109. |
62 | 江苏金合能源科技有限公司.公司蓄热式导热油锅炉在工业领域成功应用[EB/OL]. [2023-11-16]. http://jinhe-energy.com/?list_28/138.html. |
JiangSu Jinhe Energy Technology Co., Ltd. Successful application of thermal storage-type heat transfer oil boiler in the industrial field[EB/OL]. [2023-11-16]. http://jinhe-energy.com/?list_28/138.html. | |
63 | 人民网. 我国首个油气行业混凝土储热技术在华北油田应用[EB/OL]. [2024-07-17]. http://he.people.com.cn/n2/2024/0717/c192235-40914229.html. |
People's Daily Online. China's first oil and gas industry concrete thermal storage technology applied in Hua Bei Oil Field[EB/OL]. [2024-07-17]. http://he.people.com.cn/n2/2024/0717/c192235-40914229.html. | |
64 | 严璐瑶, 王未央. 浙江最大绿电熔盐储能项目验收[EB/OL]. [2022-08-22]. http://paper.people.com.cn/zgnyb/html/2022-08/22/content_25936159.htm. |
YAN L Y, WANG W Y. Zhejiang's largest green electricity molten salt energy storage project acceptance[EB/OL]. [2022-08-22].http://paper.people.com.cn/zgnyb/html/2022-08/22/content_25936159.htm. | |
65 | 杭州市人民政府. 全国首家航空零部件"零碳工厂在"杭启用[EB/OL]. [2021-11-23]. https://www.hangzhou.gov.cn/art/2021/11/23/art_812266_59044808.html. |
Hangzhou Municipal People's Government. The first "zero-carbon factory" for aviation parts in the country is put into use in Hangzhou[EB/OL]. [2021-11-23]. https://www.hangzhou.gov.cn/art/2021/11/23/art_812266_59044808.html. | |
66 | 国家太阳能光热产业技术创新战略联盟. 北京热力集团投建的国内首个熔盐储能供蒸汽项目正积极推进建设[EB/OL]. [2021-04-02] http://www.cnste.org/html/xiangmu/2021/0402/7732.html. |
China Solar Thermal Alliance. Beijing Heat Power Group is actively advancing the construction of the country's first molten salt energy storage project for steam supply[EB/OL]. [2021-04-02]. http://www.cnste.org/html/xiangmu/2021/0402/7732.html. |
[1] | Jie CHEN, Hongkun MA, Yulong DING. MgSO4·7H2O for thermochemical energy storage: Hydration/dehydration kinetics and cyclability [J]. Energy Storage Science and Technology, 2024, 13(12): 4259-4271. |
[2] | Mengru WANG, Xirui SUN, Haoyu ZHANG, Jian CHEN, Youshi LI. Investigation on support modification on thermochemical energy storage characteristics of Ca/Cu composites [J]. Energy Storage Science and Technology, 2024, 13(12): 4290-4298. |
[3] | Yang DING, Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING. Characteristics and optimization study of an adiabatic Ca-looping Carnot battery system based on pumped thermal electricity storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4247-4258. |
[4] | Shuyu XU, Yan WANG. Numerical study of thermochemical energy storage characteristics of MgSO4 [J]. Energy Storage Science and Technology, 2024, 13(12): 4299-4309. |
[5] | Zhihao ZHANG, Xiaogang JIN, Hengxing BAO, Xiang LING. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor [J]. Energy Storage Science and Technology, 2023, 12(1): 227-235. |
[6] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[7] | Xiangyu HAN, Liang WANG, Zhiwei GE, Haoshu LING, Xipeng LIN, Haisheng CHEN, Long PENG. The thermal storage and release kinetics of Co3O4/CoO redox reaction [J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. |
[8] | Bowen YANG, Jun YAN, Changying ZHAO. Investigating the performance of a fluidized bed reactor for a magnesium hydroxide thermochemical energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1735-1744. |
[9] | Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor [J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. |
[10] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[11] | WANG Shuping, XU Tao, GAO Xuenong, FANG Xiaoming, WANG Shuangfeng, ZHANG Zhengguo. Recent progress about expanded graphite matrix composite phase change material for energy storage [J]. Energy Storage Science and Technology, 2014, 3(3): 210-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||