Energy Storage Science and Technology
Yang DING(), Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING()
Received:
2024-09-29
Revised:
2024-10-28
Contact:
Xiang LING
E-mail:yding_9@njtech.edu.cn;xling@njtech.edu.cn
CLC Number:
Yang DING, Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING. Characteristics and optimization study of an adiabatic Ca-looping Carnot battery system based on pumped thermal electricity storage[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0918.
Table 2
Case 2 (max cycle efficiency) operating parameter set"
储能过程 | 释能过程 | ||
---|---|---|---|
循环高压 1C | 201 bar | 循环高压 2C2 | 171 bar |
循环低压 1E | 15 bar | 循环低压 2E2 | 55 bar |
循环压比 | 13.40 | 循环压比 | 3.11 |
冷却温度 1TH | 397 ℃ | 中间压缩压力 2C1 | 56 bar |
加热温度 1TL | 39 ℃ | 中间膨胀压力 2E2 | 108 bar |
循环高温 | 635.63 ℃ | 加热温度 2TH1、2 | 595 ℃ |
冷却温度 2TL1、2 | -102 ℃ | ||
分解温度 | 415 ℃ | 水合温度 | 600 ℃ |
CaO预热温度 2HX3 | 572 ℃ | ||
H2O预热温度 SuperH | 459 ℃ | ||
CaO存储温度 1HX4 | 50 ℃ | Ca(OH)2存储温度 2HX2 | 50 ℃ |
1 | 武强, 涂坤, 曾一凡. "双碳"目标愿景下我国能源战略形势若干问题思考[J]. 科学通报, 2023, 68(15): 1884-1898. |
WU Q, TU K, ZENG Y F. Research on China's energy strategic situation under the carbon peaking and carbon neutrality goals[J]. Chinese Science Bulletin, 2023, 68(15): 1884-1898. | |
2 | 郑天一, 简析储能技术的应用研究[C]. 第三十六届中国(天津)2022' IT、网络、信息技术、电子、仪器仪表创新学术会议论文集, 2022: 178-181. |
ZHENG T Y. A brief analysis of the application research of energy storage technology[C]// Proceedings of the 36th China (Tianjin) 2022' IT, Network, Information Technology, Electronics, Instrumentation Innovation Academic Conference, 2022: 178-181. | |
3 | 张琼, 王亮, 徐玉杰, 等. 热泵储电技术研究进展[J]. 中国电机工程学报, 2018, 38(01): 178-185+354. |
ZHANG Q, WANG L, XU Y J, et al. Research progress in pumped heat electricity storage system: A Review[J]. Proceedings of the CSEE, 2018, 38(01): 178-185+354. | |
4 | 张谨奕, 王含, 白宁, 等. 热泵储电系统的热力学分析[J]. 热力发电, 2020, 49(08): 43-49+63. |
ZHANG J Y, WANG H, BAI N, et al. Thermodynamic analysis for heat pump electricity storage system[J]. Thermal Power Generation, 2020, 49(08): 43-49+63. | |
5 | 殷子彦, 戴叶, 徐博, 等. 新型热泵储电系统的设计方案及其性能分析[J]. 可再生能源, 2019, 37(05): 784-790. |
YIN Z Y, DAI Y, XU B, et al. New design scheme of pumped thermal electricity system and its performance analysis[J]. Renewable Energy Resources, 2019, 37(05): 784-790. | |
6 | DAVENNE T R, PETERS B. An analysis of pumped thermal energy storage with De-coupled thermal stores[J]. Frontiers in Energy Research, 2020, 8: 160. |
7 | 张琼. 新型热泵储电技术仿真研究[D]. 中国科学院大学(中国科学院工程热物理研究所), 2017. |
ZHANG Q. Simulation research on the novel pumped thermal electricity storage technology[D]. Institute of Engineering Thermophysics Chinese Academy of Sciences, 2017. | |
8 | WANG L, LIN X P, ZHANG H, et al. Analytic optimization of Joule-Brayton cycle-based pumped thermal electricity storage system[J]. Journal of Energy Storage, 2022, 47: 1036603. |
9 | PALOMBA V, FRAZZICA A. Recent advancements in sorption technology for solar thermal energy storage applications[J]. Solar Energy, 2019, 192: 69-105. |
10 | 凌祥,宋丹阳,陈晓轶, 等. 钙基热化学储能体系装备与系统研究进展[J]. 化工进展, 2021, 40(04): 1777-1796. |
LING X, SONG D Y, CHEN X Y, et al. Progress in equipment and systems for calcium-based thermochemical energy storage system[J]. Chemical Industry and Engineering Progress, 2021, 40(04): 1777-1796. | |
11 | CHEN X Y, JIN X G, LING X, et al. Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle[J]. Energy, 2020, 209: 118452. |
12 | LIU Z Y, ZHANG H, JIN X, et al. Thermal economy analysis and multi-objective optimization of a small CO2 transcritical pumped thermal electricity storage system[J]. Energy Conversion and Management, 2023, 293: 117451. |
13 | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(05): 1796-1805. |
ZHANG H, WANG L, LlN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(05): 1796-1805. | |
14 | SCHAUBE F, KOCH L, WÖRNER A, et al. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage[J]. Thermochimica Acta, 2012, 538: 9-20. |
15 | TOFFOLO A, LAZZARETTO A, MORANDIN M. The HEATSEP method for the synthesis of thermal systems: An application to the S-Graz cycle[J]. Energy, 2010, 35(2): 976-981. |
16 | KEMP I C, Pinch analysis and process integration: A user guide on process integration for the effcient use of energy[M]. 2nd ed. Oxford: Elsevier Ltd., 2007. |
17 | 陈璐璐, 邱建林, 陈燕云, 等. 改进的遗传粒子群混合优化算法[J]. 计算机工程与设计, 2017, 38(02): 395-399. |
CHEN L L, QlU J L, CHEN Y Y, et al. Improved hybrid optimization algorithms based on genetic algorithm and particle swarm optimization[J]. Computer Engineering and Design, 2017, 38(02): 395-399. | |
18 | KORAKIANITIS T, WILSON D G. Models for predicting the performance of Brayton-cycle engines[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 1994, 116(2): 381-388. |
[1] | Zuogang GUO, Tong LIU, Min XU, Shen XU, Guangming CHEN, Xinyue HAO. Theoretical analysis of a novel ejector augmented compressed air energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1877-1887. |
[2] | Jian SUN, Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG. Summary of research on power storage technology based on heat pump at home and abroad [J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976. |
[3] | Chao WU, Luoya WANG, Zijie YUAN, Changlong MA, Jilei YE, Yuping WU, Lili LIU. Research progress in liquid cooling and heat dissipation technologies for electrochemical energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(10): 3596-3612. |
[4] | Yanjun BO, Xinjie XUE, Huaning WANG, Changying ZHAO. System design and experimental study of Carnot battery based on latent heat/cold stores [J]. Energy Storage Science and Technology, 2023, 12(9): 2823-2832. |
[5] | Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant [J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. |
[6] | Limu XIAO, Xin GAO, Shihai ZHANG, Xiankui WEN. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. |
[7] | Li SHENG, Xinjie XUE, Yanjun BO, Changying ZHAO. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium [J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. |
[8] | Han ZHANG, Liang WANG, Xipeng LIN, Haisheng CHEN. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle [J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. |
[9] | Zirui HE, Wei QI, Jintao SONG, Shuangshuang CUI, Hong LI. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas [J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596. |
[10] | YAN Hongli, JING Zhiliang, LU Zuowei, WANG Yuqi, WU Zhen. Study on coupling characteristics of PEMFC power generation system using chemisorption as solid-state hydrogen storage [J]. Energy Storage Science and Technology, 2020, 9(1): 152-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||