Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1963-1976.doi: 10.19799/j.cnki.2095-4239.2023.0938
• Energy Storage System and Engineering • Previous Articles Next Articles
Jian SUN(), Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG
Received:
2023-12-22
Revised:
2024-02-06
Online:
2024-06-28
Published:
2024-06-26
Contact:
Jian SUN
E-mail:chaojirebeng@163.com
CLC Number:
Jian SUN, Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG. Summary of research on power storage technology based on heat pump at home and abroad[J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976.
Table 1
Comparison between heat pump power storage technology and other energy storage technologies"
储能技术 | 规模/MW | 效率/% | 成本/(USD/kWh) | 能量密度/(Wh/kg) | 存储时间/h | 寿命/年 | 发展阶段 |
---|---|---|---|---|---|---|---|
热泵储电 | 0.5~10 | 40~70 | 60 | 50~140 | 1~24+ | 25~30 | 研发 |
压缩空气储能 | 10~2700 | 40~70.5 | 2~200 | 3~60 | 1~24+ | 20~60 | 成熟 |
抽水储能 | 100~5000 | 65~85 | 164~233 | 0.5~1.5 | 1~24+ | 50~100 | 成熟 |
氢储能 | 1~8000 | 40~50 | 800~1200 | 40×103 | 1~24+ | 20 | 研发-商用 |
1 | 郑天一. 简析储能技术的应用研究[C]// 第三十六届中国(天津)2022'IT、网络、信息技术、电子、仪器仪表创新学术会议论文集. 天津, 2022: 178-181. |
2 | 谢彦祥, 肖汉, 夏雪, 等. 碳中和目标下中国碳减排路径及建议[J]. 电工电气, 2022(5): 1-7. |
XIE Y X, XIAO H, XIA X, et al. China's carbon emission reduction paths and suggestions under the carbon neutrality target[J]. Electrotechnics Electric, 2022(5): 1-7. | |
3 | 沈小晓, 李强, 岳林炜. 多国加快新型储能技术发展[N]. 人民日报, 2022-07-19(17). |
4 | BENATO A, STOPPATO A. Pumped Thermal Electricity Storage: A technology overview[J]. Thermal Science and Engineering Progress, 2018, 6: 301-315. |
5 | 电力规划设计总院. 中国能源发展报告-2020[M]. 北京: 人民日报出版社, 2021. |
6 | 杜芳. 储能技术在新能源电力系统中的应用分析[J]. 中国高新科技, 2020(20): 17-18. |
DU F. Application analysis of energy storage technology in new energy power system[J]. China High and New Technology, 2020(20): 17-18. | |
7 | 王士博, 孔令国, 蔡国伟, 等. 电力系统氢储能关键应用技术现状、挑战及展望[J]. 中国电机工程学报, 2023, 43(17): 6660-6681. |
WANG S B, KONG L G, CAI G W, et al. Current status, challenges and prospects of key application technologies for hydrogen storage in power system[J]. Proceedings of the CSEE, 2023, 43(17): 6660-6681. | |
8 | BARBOUR E, GRANT WILSON I A, RADCLIFFE J, et al. A review of pumped hydro energy storage development in significant international electricity markets[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 421-432. |
9 | 万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
WAN M Z, WANG Y Y, LI J, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. | |
10 | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. |
HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. | |
11 | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
XUE F, MA X M, YOU Y J. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. | |
12 | 霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用综述[J]. 储能科学与技术, 2016, 5(2): 197-203. |
HUO X X, WANG J, JIANG L, et al. Review on key technologies and applications of hydrogen energy storage system[J]. Energy Storage Science and Technology, 2016, 5(2): 197-203. | |
13 | 许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99. |
XU C B, LIU J G. Hydrogen energy storage in China's new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99. | |
14 | BENATO A. Performance and cost evaluation of an innovative pumped thermal electricity Storage power system[J]. Energy, 2017, 138: 419-436. |
15 | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. |
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. | |
16 | MCTIGUE J, FARRES-ANTUNEZ P, ELLINGWOOD K, et al. Pumped thermal electricity storage with supercritical CO2 cycles and solar heat input[C]//The Vii International Young Researchers' Conference—Physics, Technology, Innovations (pti-2020)", "AIP Conference Proceedings. Ekaterinburg, Russia. AIP Publishing, 2020. |
17 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
18 | MARGUERRE F.Ueber ein neues verfahren zur aufspeicherung elektrischer energie[J].Mitteilungen der Vereinigung der Elektrizitätswerke,1924, 354(55): 27-35. |
19 | DUMONT O, LEMORT V. Mapping of performance of pumped thermal energy storage (carnot battery) using waste heat recovery[J]. Energy, 2020, 211: 118963. |
20 | DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432. |
21 | HOWES J. Concept and development of a pumped heat electricity storage device[J]. Proceedings of the IEEE, 2012, 100(2): 493-503. |
22 | THESS A. Thermodynamic efficiency of pumped heat electricity storage[J]. Physical Review Letters, 2013, 111(11): 110602. |
23 | WANG L, LIN X P, ZHANG H, et al. Thermodynamic analysis and optimization of pumped thermal-liquid air energy storage (PTLAES)[J]. Applied Energy, 2023, 332: 120499. |
24 | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5): 1796-1805. |
ZHANG H, WANG L, LIN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. | |
25 | ZHANG H, WANG L, LIN X P, et al. Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage[J]. Energy, 2022, 239: 121966. |
26 | ZHAO Y L, LIU M, SONG J, et al. Advanced exergy analysis of a Joule-Brayton pumped thermal electricity storage system with liquid-phase storage[J]. Energy Conversion and Management, 2021, 231: 113867. |
27 | 杨鹤, 杜小泽. 布雷顿循环热泵储能的性能分析与多目标优化[J]. 中国电机工程学报, 2022, 42(1): 196-211. |
YANG H, DU X Z. Performance analysis and multi-objective optimization of brayton cycle pumped thermal energy storage[J]. Proceedings of the CSEE, 2022, 42(1): 196-211. | |
28 | DAVENNE T R, PETERS B M. An analysis of pumped thermal energy storage with de-coupled thermal stores[J]. Frontiers in Energy Research, 2020, 8: 160. |
29 | 张谨奕, 王含, 白宁, 等. 热泵储电系统的热力学分析[J]. 热力发电, 2020, 49(8): 43-49, 63. |
ZHANG J Y, WANG H, BAI N, et al. Thermodynamic analysis for heat pump electricity storage system[J]. Thermal Power Generation, 2020, 49(8): 43-49, 63. | |
30 | MCTIGUE J D, WHITE A J, MARKIDES C N. Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137: 800-811. |
31 | 吴智泉, 王际辉, 白宁.闭式布雷顿循环热泵储电系统的(㶲)分析[J]. 太阳能学报, 2023, 44(3): 336-343. |
WU Z Q, WANG J H, BAI N.Analysis of closed Brayton cycle heat pump storage system[J]. Journal of Solar Energy, 2023, 44(3): 336-343. | |
32 | GUO J C, CAI L, CHEN J C, et al. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system[J]. Energy, 2016, 113: 693-701. |
33 | PÉREZ-GALLEGO D, GONZALEZ-AYALA J, CALVO HERNÁNDEZ A, et al. Thermodynamic performance of a brayton pumped heat energy storage system: Influence of internal and external irreversibilities[J]. Entropy, 2021, 23(12): 1564. |
34 | 王际辉, 白宁, 沈峰. 储热温度对热泵储电系统效率的影响[J]. 太阳能学报, 2023, 44(7): 48-54. |
WANG J H, BAI N, SHEN F. Effect of thermal storage temperature on efficiency of pumped thermal electricity storage system[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 48-54. | |
35 | 王际辉, 白宁. 热泵储电系统中压降对效率的影响[J]. 中外能源, 2022, 27(8): 86-93. |
WANG J H, BAI N. Influence of pressure drop on efficiency in pumped thermal electricity storage system[J]. Sino-Global Energy, 2022, 27(8): 86-93. | |
36 | WANG L, LIN X P, ZHANG H, et al. Analytic optimization of Joule-Brayton cycle-based pumped thermal electricity storage system[R]. Analytic Optimization Of Joule-Brayton Cycle-Based Pumped Thermal Electricity Storage System, 2021. |
37 | 张谨奕, 白宁, 李京浩, 等. 基于Simulink的热泵储电系统动态仿真[J]. 分布式能源, 2020, 5(3): 15-22. |
ZHANG J Y, BAI N, LI J H, et al. Dynamic simulation of pumped thermal electricity storage system based on simulink[J]. Distributed Energy, 2020, 5(3): 15-22. | |
38 | ZHANG H, WANG L, LIN X P, et al. Parametric optimisation and thermo-economic analysis of Joule-Brayton cycle-based pumped thermal electricity storage system under various charging-discharging periods[J]. Energy, 2023, 263: 125908. |
39 | 路唱, 史幸平, 贾明祥, 等. 热泵储电系统的动态模型及其启动特性分析[J]. 中国电机工程学报, 2022, 42(S1): 167-176. |
LU C, SHI X P, JIA M X, et al. Dynamic model of heat pump power storage system and its start-up characteristics analysis[J]. Proceedings of the CSEE, 2022, 42(S1): 167-176. | |
40 | LU C, SHI X P, HE Q, et al. Dynamic modeling and numerical investigation of novel pumped thermal electricity storage system during startup process[J]. Journal of Energy Storage, 2022, 55: 105409. |
41 | YANG H, LI J D, GE Z H, et al. Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle[J]. Energy, 2023, 263: 125930. |
42 | ZHANG H, WANG L, LIN X P, et al. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle[J]. Applied Energy, 2020, 278: 115607. |
43 | 孙鹏. 基于高低温蓄热的蒸汽热泵储能系统设计与应用研究[D]. 杭州: 浙江大学, 2023. |
SUN P. Design and application of pumped thermal energy storage system based on high and low temperature energy storage[D]. Hangzhou: Zhejiang University, 2023. | |
44 | FARRES-ANTUNEZ P, XUE H B, WHITE A J. Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle[J]. Journal of Energy Storage, 2018, 18: 90-102. |
45 | FARRES-ANTUNEZ P, MCTIGUE J D, WHITE A J. A pumped thermal energy storage cycle with capacity for concentrated solar power integration[C]//2019 Offshore Energy and Storage Summit (OSES). BREST, France. IEEE, 2019: 1-10. |
46 | PETROLLESE M, CASCETTA M, TOLA V, et al. Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation[J]. Energy, 2022, 247: 123516. |
47 | DIETRICH A, DAMMEL F, STEPHAN P. Exergoeconomic analysis of a pumped heat electricity storage system based on a Joule/Brayton cycle[J]. Energy Science & Engineering, 2021, 9(5): 645-660. |
48 | SMALLBONE A, JÜLCH V, WARDLE R, et al. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152: 221-228. |
49 | FRATE G F, FERRARI L, DESIDERI U. Multi-criteria economic analysis of a pumped thermal electricity storage (PTES) with thermal integration[J]. Frontiers in Energy Research, 2020, 8: 53. |
50 | AMEEN M T, MA Z, SMALLBONE A, et al. Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency[J].Applied Energy, 2023, 333: 120580. |
51 | MORANDIN M, MERCANGÖZ M, HEMRLE J, et al. Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles[J]. Energy, 2013, 58571-587. |
52 | MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415. |
53 | MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles–Part A: Methodology and base case[J]. Energy, 2012, 45(1): 375-385. |
54 | MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles–Part B: Alternative system configurations[J]. Energy, 2012, 45(1): 386-396. |
55 | FRATE G F, FERRARI L, DESIDERI U. Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage[J]. Energy Conversion and Management, 2020, 208: 112530. |
56 | 赵永亮, 王朝阳, 刘明, 等. 基于跨临界循环的卡诺电池储能系统构型优化[J]. 工程热物理学报, 2021, 42(7): 1659-1666. |
ZHAO Y L, WANG C Y, LIU M, et al. Configuration optimization of Carnot battery energy storage system based on transcritical cycles[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1659-1666. | |
57 | CHEN L, HU P, ZHAO P P, et al. Thermodynamic analysis of a high temperature pumped thermal electricity storage (HT-PTES) integrated with a parallel organic Rankine cycle (ORC)[J]. Energy Conversion and Management, 2018, 77: 150-160. |
58 | STEINMANN W D, BAUER D, JOCKENHÖFER H, et al. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity[J]. Energy, 2019, 183: 185-190. |
59 | KURŞUN B, ÖKTEN K. Comprehensive energy, exergy, and economic analysis of the scenario of supplementing pumped thermal energy storage (PTES) with a concentrated photovoltaic thermal system[J]. Energy Conversion and Management, 2022, 260: 115592. |
60 | JOCKENHÖFER H, STEINMANN W D, BAUER D. Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration[J]. Energy, 2018, 145: 665-676. |
61 | HU S Z, YANG Z, LI J, et al. Thermo-economic analysis of the pumped thermal energy storage with thermal integration in different application scenarios[J]. Energy Conversion and Management, 2021, 236: 114072. |
62 | EPPINGER B, ZIGAN L, KARL J, et al. Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids[J]. Applied Energy, 2020, 280: 115940. |
63 | AMEEN M T, MA Z W, SMALLBONE A, et al. Experimental study and analysis of a novel layered packed-bed for thermal energy storage applications: A proof of concept[J]. Energy Conversion and Management, 2023, 277: 116648. |
64 | BENATO A, STOPPATO A. Integrated thermal electricity storage system: energetic and cost performance[J]. Energy Conversion and Management, 2019, 197: 111833. |
65 | ZHAO Y L, SONG J, LIU M, et al. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials[J]. Renewable Energy, 2022, 186: 431-456. |
66 | 圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657. |
SHENG L, XUE X J, BO Y J, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. | |
67 | ALBERT M, MA Z W, BAO H S, et al. Operation and performance of brayton pumped thermal energy storage with additional latent storage[J]. Applied Energy, 2022, 10.1016/j.apenergy.2022.118700. |
68 | XUE X J, ZHAO C Y. Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores[J]. Applied Energy, 2023, 329: 120274. |
69 | GE Y Q, ZHAO Y, ZHAO C Y. Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores[J]. Renewable Energy, 2021, 174: 939-951. |
70 | GEORGIOU S, SHAH N, MARKIDES C N. A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems[J]. Applied Energy, 2018, 226: 1119-1133. |
71 | 殷子彦, 戴叶, 徐博, 等. 新型热泵储电系统的设计方案及其性能分析[J]. 可再生能源, 2019, 37(5): 784-790. |
YIN Z Y, DAI Y, XU B, et al. New design scheme of pumped thermal electricity system and its performance analysis[J]. Renewable Energy Resources, 2019, 37(5): 784-790. | |
72 | HASSAN A H, O'DONOGHUE L, SÁNCHEZ-CANALES V, et al. Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations[J]. Energy Reports, 2020, 6: 147-159. |
73 | STEINMANN W D. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69: 543-552. |
74 | WANG L, LIN X P, CHAI L, et al. Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 523-534. |
[1] | Chu ZHANG, Dongcai CHEN, Xiangping CHEN, Yongxiang CAI. Economic benefit analysis of optimal allocation of energy storage in multiple application scenarios [J]. Energy Storage Science and Technology, 2024, 13(6): 2078-2088. |
[2] | Li ZHOU, Yan LIU. Application and development of alloy materials in energy storage technology [J]. Energy Storage Science and Technology, 2024, 13(6): 1874-1876. |
[3] | Zhenxin SUN, Zhiming ZHANG, Fubo MA, Congjin JIANG, Haoyi DU, Huanjun CHEN, Yukui ZHANG. Investigation of energy regulation performance based on entropy theory [J]. Energy Storage Science and Technology, 2024, 13(5): 1584-1591. |
[4] | Ting HE, Junqiang QIAO, Guodong WU. Curtailed power forecasting based on GRU and operation optimization of electric-hydrogen hybrid energy storage system [J]. Energy Storage Science and Technology, 2024, 13(5): 1731-1740. |
[5] | Jingye ZHANG, Yuxin LIN, Qingquan QIU, Liye XIAO. Gravity energy storage technology based on slopes and mountains [J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. |
[6] | Tianchen LI, Jianzheng YIN, Dawei ZHANG, Xiaoheng LIU. Research on renewable energy grid integration strategy based on hydropower station energy storage technology [J]. Energy Storage Science and Technology, 2024, 13(2): 677-679. |
[7] | Min PANG. Research on building energy planning and utilization based on the coupling of renewable energy and energy storage [J]. Energy Storage Science and Technology, 2024, 13(2): 586-588. |
[8] | Su YAN, Fangfang ZHONG, Junwei LIU, Mei DING, Chuankun JIA. Key materials and advanced characterization of high-energy-density flow battery [J]. Energy Storage Science and Technology, 2024, 13(1): 143-156. |
[9] | Wei ZHANG, Shigang LUO, Jie TENG, Yongli BAI. Joint planning of renewable energy and storage considering thermostatically controlled loads aggregation regulation [J]. Energy Storage Science and Technology, 2023, 12(6): 1901-1912. |
[10] | Jiajun ZHANG, Xiaoqiong LI, Zhentao ZHANG, Jiahao HAO, Pingyang ZHENG, Ze YU, Junling YANG, Yanan JING, Yunkai YUE. Research progress of compressed carbon dioxide energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. |
[11] | Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. |
[12] | Haidong CHEN, Fei MENG, Qing WANG, Feng HOU, Yi WANG, Zhihua ZHANG. Influence of installed capacity of energy storage system and renewable energy power generation on power system performance [J]. Energy Storage Science and Technology, 2023, 12(2): 477-485. |
[13] | Yulei LI, Wei LIU, Binqi DONG, Dingguo XIA. Green hydrogen ammonia synthesis in China under double carbon target:Research on development basis and route [J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. |
[14] | Han JIANG, Xinzhi XU, Zhe LIU, Rui ZHANG, Xu HU. Energy transition and hydrogen development prospects in Saudi Arabia [J]. Energy Storage Science and Technology, 2022, 11(7): 2354-2365. |
[15] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||