Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 467-478.doi: 10.19799/j.cnki.2095-4239.2025.0189
Previous Articles Next Articles
Yuchen GAO(), Weilin LI(
), Xiang CHEN(
), Yuhang YUAN, Yilin NIU, Qiang ZHANG(
)
Received:
2025-02-28
Revised:
2025-03-03
Online:
2025-02-28
Published:
2025-03-18
Contact:
Xiang CHEN, Qiang ZHANG
E-mail:gyc22@mails.tsinghua.edu.cn;liwl22@mails.tsinghua.edu.cn;xiangchen@mail.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
CLC Number:
Yuchen GAO, Weilin LI, Xiang CHEN, Yuhang YUAN, Yilin NIU, Qiang ZHANG. A perspective on DeepSeek application in energy storage research[J]. Energy Storage Science and Technology, 2025, 14(2): 467-478.
Table 2
Comparison of design scheme for 600 Wh/kg all solid state lithium metal battery proposed by DeepSeek and GPT-4o"
设计角度 | DeepSeek-R1 | GPT-4o | ||
---|---|---|---|---|
核心材料 | 正极材料 | 富锂锰基氧化物 | 富锂镍钴铝氧化物 镍钴锰氧化物 钴酸锂 | |
负极材料 | 锂金属负极 3860 mAh/g | 锂金属负极 | ||
电解质 | 硫化物电解质(Li10GeP2S12) | 硫化物电解质 氧化物电解质 聚合物电解质 | ||
界面优化 | 正极 | 三维互穿 Li3PO4-Li2S梯度涂层 | 界面涂层 优化固态电解质-电极的界面 | |
负极 | 锂合金缓冲层 | |||
电池结构 | 双极堆叠 | 薄膜电池设计 提高电导率 | ||
超薄集流体 | ||||
质量分配优化 正极活性物质占比 | ||||
理论能量密度计算 | 610 Wh/kg | 无 |
1 | AGENCY I E. Net Zero by 2050: A Roadmap for the Global Energy Sector[M]. OECD, 2021. DOI:10.1787/c8328405-en. |
2 | 国家能源局. 2024年可再生能源并网运行情况 [EB/OL]. (2025-01-27). [2025-02-13]. https://video.cpnn.com.cn/news/nytt/202501/t20250127_1769671.html |
3 | 代宇涵, 刘春, 周朋, 等. 双碳背景下电力系统储能技术的应用与研究进展[J]. 储能科学与技术, 2024, 13(8): 2772-2774. DOI: 10.19799/j.cnki.2095-4239.2024.0695. |
DAI Y H, LIU C, ZHOU P, et al. Application and research progress of energy storage technology in power systems under the dual carbon background[J]. Energy Storage Science and Technology, 2024, 13(8): 2772-2774. DOI: 10.19799/j.cnki.2095-4239.2024.0695. | |
4 | 中关村储能产业技术联盟. 2024年度cnesa储能数据重磅发布 [EB/OL]. (2025-01-15). [2025-02-13]. https://mp.weixin.qq.com/s/ytgUGjJcdBq3pHI9vby51A |
5 | 张继阳, 郑秀, 赵斌, 等. 电网级大规模储能的电池技术进展[J]. 电池, 2024, 54(5): DOI: 10.19535/j.1001-1579.2024.05.029 |
ZHANG J Y, ZHENG X, ZHAO B, et al. Progress in battery technology for large-scale grid-level energy storage[J]. Battery Bimonthly, 2024, 54(5): DOI: 10.19535/j.1001-1579.2024.05.029 | |
6 | 李政, 李伟起, 张忠伟, 等. "双碳" 目标下我国电力系统灵活性资源发展策略研究[J]. 中国工程科学, 2024, 26(4): 108-120. DOI: 10.15302/J-SSCAE-2024.04.018. |
LI Z, LI W Q, ZHANG Z W, et al. Development strategy of flexible resources in China's power system under the carbon peaking and carbon neutrality goals[J]. Strategic Study of CAE, 2024, 26(4): 108-120. DOI: 10.15302/J-SSCAE-2024.04.018. | |
7 | BENAYAD A, DIDDENS D, HEUER A, et al. High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research[J]. Advanced Energy Materials, 2022, 12(17): 2102678. DOI:10. 1002/aenm.202102678. |
8 | LOMBARDO T, DUQUESNOY M, EL-BOUYSIDY H, et al. Artificial intelligence applied to battery research: Hype or reality?[J]. Chemical Reviews, 2022, 122(12): 10899-10969. DOI:10.1021/acs.chemrev.1c00108. |
9 | LI Z, HOU L P, YAO N, et al. Correlating polysulfide solvation structure with electrode kinetics towards long-cycling lithium-sulfur batteries[J]. Angewandte Chemie (International Ed), 2023, 62(43): e202309968. DOI:10.1002/anie.202309968. |
10 | LI Z, YU L G, BI C X, et al. A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium-sulfur pouch cells[J]. SusMat, 2024, 4(2): e200. DOI:10.1002/sus2.200. |
11 | 黄海泉, 黄晓巍, 姜望, 等. 新型配电网分布式储能系统方案及配置研究综述[J]. 南方能源建设, 2024, 11(4): 42-53. DOI: 10.16516/j.ceec.2024.4.05. |
HUANG H Q, HUANG X W, JIANG W, et al. A review of distributed energy storage system solutions and configurations for new distribution grids[J]. Southern Energy Construction, 2024, 11(4): 42-53. DOI: 10.16516/j.ceec.2024.4.05. | |
12 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890. DOI:10.1038/s41560-019-0474-3. |
13 | 沈馨, 张睿, 赵辰孜, 等. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. DOI: 10.19799/j.cnki.2095-4239.2022.0326. |
SHEN X, ZHANG R, ZHAO C Z, et al. Recent advances in mechano-electrochemistry in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. DOI: 10.19799/j.cnki.2095-4239.2022.0326. | |
14 | 黄家辉, 邝祝芳. 人工智能与储能技术融合的前沿发展[J]. 储能科学与技术, 2024, 13(9): 3161-3181. DOI: 10.19799/j.cnki.2095-4239.2024.0575. |
HUANG J H, KUANG Z F. The forefront of the integration of artificial intelligence and energy storage technologies[J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. DOI: 10.19799/j.cnki.2095-4239.2024.0575. | |
15 | 袁誉杭, 高宇辰, 张俊东, 等. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. DOI: 10.19799/j.cnki.2095-4239.2024.0176. |
YUAN Y H, GAO Y C, ZHANG J D, et al. The application of large language models in energy storage research[J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. DOI: 10.19799/j.cnki.2095-4239.2024.0176. | |
16 | CHEN X, LIU X Y, SHEN X, et al. Applying machine learning to rechargeable batteries: From the microscale to the macroscale[J]. Angewandte Chemie, 2021, 133(46): 24558-24570. DOI:10.1002/ange.202107369. |
17 | YAO N, CHEN X, FU Z H, et al. Applying classical, Ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chemical Reviews, 2022, 122(12): 10970-11021. DOI:10.1021/acs.chemrev.1c00904. |
18 | GAO Y C, YAO N, CHEN X, et al. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes[J]. Journal of the American Chemical Society, 2023, 145(43): 23764-23770. DOI:10.1021/jacs.3c08346. |
19 | GAO Y C, YUAN Y H, HUANG S Z, et al. A knowledge-data dual-driven framework for predicting the molecular properties of rechargeable battery electrolytes[J]. Angewandte Chemie (International Ed), 2025, 64(4): e202416506. DOI:10.1002/anie.202416506. |
20 | 清华四川能源互联网研究院. 清华四川院助力江苏首座AI智慧调控光储充换一体化站建设[EB/OL]. (2025-01-06). [2025-02-13]. https://mp.weixin.qq.com/s/hVgxfkTv6bAlRpCAjddWjA |
21 | WANG Y, FENG X N, GUO D X, et al. Temperature excavation to boost machine learning battery thermochemical predictions[J]. Joule, 2024, 8(9): 2639-2651. DOI:10.1016/j.joule.2024.07.002. |
22 | JAIN M, SUN X Q, DATTA S, et al. A machine learning framework to deconstruct the primary drivers for electricity market price events[C]//2023 IEEE Power & Energy Society General Meeting (PESGM). July 16-20, 2023, Orlando, FL, USA. IEEE, 2023: 1-5. DOI:10.1109/PESGM52003.2023.10252752. |
23 | PATTERSON D, GONZALEZ J, LE Q, et al. Carbon emissions and large neural network training[EB/OL]. 2021: 2104.10350. https://arxiv.org/abs/2104.10350v3. |
24 | WILSON L. Average household electricity consumption-2025[EB/OL]. (2025). [2025-02-13]. https://shrinkthatfootprint.com/average-household-electricity-consumption/ |
25 | ARGERICH M F, PATIÑO-MARTÍNEZ M. Measuring and improving the energy efficiency of large language models inference[J]. IEEE Access, 2024, 12: 80194-80207. DOI:10.1109/ACCESS.2024.3409745. |
26 | OPENAI. AI and compute[EB/OL]. (2018-05-16). [2025-02-13]. https://openai.com/index/ai-and-compute/ |
27 | AGENCY I E. Electricity 2024[R]. Paris: International Energy Agency, 2024. |
28 | COMPANY M. Global energy perspective 2024[R]. McKinsey & Company, 2024. |
29 | DEEPSEEK-AI. DeepSeek-v3 technical report[EB/OL]. (2025-02-18). [2025-02-25]. https://arxiv.org/abs/2412.19437 |
30 | RAY PERRAULT, CLARK J. Artificial intelligence index report 2024[R]. USA: Stanford University Human-Cenrered Artificial Intelligence, 2024. |
31 | LIU A, FENG B, XUE B, et al. DeepSeek-v3 technical report[J]. arXiv preprint arXiv:, 2024. |
32 | DeepSeek-AI, GUO D Y, YANG D J, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. 2025: 2501.12948. https://arxiv.org/abs/2501.12948v1. |
33 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017, 30. |
34 | RAMIJ J, NOWLAN S, HINTON G. Adaptive mixture of local expert[J]. Neural Comput, 1991, 3: 79-87. |
35 | SHAZEER N, MIRHOSEINI A, MAZIARZ K, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer[EB/OL]. 2017: 1701.06538. https://arxiv.org/abs/1701. 06538v1. |
36 | SHEN S, HOU L, ZHOU Y Q, et al. Mixture-of-experts meets instruction tuning: A winning combination for large language models[C]//International Conference on Learning Representations, 2023. |
37 | WANG L A, GAO H Z, ZHAO C G, et al. Auxiliary-loss-free load balancing strategy for mixture-of-experts[R/OL]. 2024. https://ui.adsabs.harvard.edu/abs/2024arXiv240815664W/abstract. |
38 | GLOECKLE F, IDRISSI B Y, ROZIèRE B, et al. Better & faster large language models via multi-token prediction[EB/OL]. (2024-04-30). [2025-02-27]. https://arxiv.org/abs/2404.19737. |
39 | LI N, CHEN Z P, REN W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17360-17365. DOI:10.1073/pnas.1210072109. |
40 | WU X S, LIU T, LEE Y G, et al. Glycerol triacetate-based flame retardant high-temperature electrolyte for the lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2024, 16(19): 24590-24600. DOI:10.1021/acsami.4c02323. |
41 | LI G X, KOVERGA V, NGUYEN A, et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent[J]. Nature Energy, 2024, 9: 817-827. DOI:10.1038/s41560-024-01519-5. |
42 | CHOI I R, CHEN Y L, SHAH A, et al. Asymmetric ether solvents for high-rate lithium metal batteries[J]. Nature Energy, 2025. DOI:10.1038/s41560-025-01716-w. |
43 | ZOU C F, YANG L, LUO K L, et al. Performance improvement of Li6PS5Cl solid electrolyte modified by poly(ethylene oxide)-based composite polymer electrolyte with ZSM-5 molecular sieves[J]. ACS Applied Energy Materials, 2022, 5(2): 2356-2365. DOI:10.1021/acsaem.1c03819. |
44 | CUI L F, ZHANG S, JU J W, et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries[J]. Nature Energy, 2024, 9: 1084-1094. DOI:10.1038/s41560-024-01596-6. |
45 | KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+ xP1– xGexS5I for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(47): 16330-16339. DOI:10.1021/jacs.8b10282. |
46 | ZHOU W D, LI Y T, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3(1): 52-57. DOI:10.1021/acscentsci.6b00321. |
47 | GAO X, YU Z A, WANG J Y, et al. Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium-sulfur batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(31): e2301260120. DOI:10.1073/pnas.2301260120. |
48 | LUO C, HU E Y, GASKELL K J, et al. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14712-14720. DOI:10.1073/pnas.2006301117. |
49 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. DOI:10.1038/nmat3066. |
50 | ZHU L, WANG Y W, CHEN J C, et al. Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites[J]. Science Advances, 2022, 8(11): eabj7698. DOI:10.1126/sciadv.abj7698. |
51 | JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8: 230-240. DOI:10.1038/s41560-023-01208-9. |
52 | LIU L L, XU J R, WANG S, et al. Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1: 100010. DOI:10.1016/j.etran.2019.100010. |
53 | KATO Y, HORI S, KANNO R. Li10GeP2S12-type superionic conductors: Synthesis, structure, and ionic transportation[J]. Advanced Energy Materials, 2020, 10(42): 2002153. DOI:10.1002/aenm.202002153. |
[1] | Zhenfei LIANG, Xingxing WANG, Haochen HU, Yanhong LI, Boxue OUYANG, Xiaoyun SUN, Ruimao GAO, Jun YE, Deren WANG. Advancements in electrolyte and membrane technologies for zinc-bromine flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 583-600. |
[2] | Yukun XU, Jun YU, Chao JIANG, Jinghua WANG, Wanru ZHAO. Cost analysis of energy storage technology and power system optimization design [J]. Energy Storage Science and Technology, 2025, 14(2): 876-878. |
[3] | Aimin SUN, Jianjun HONG, Jianfeng ZHENG. Analysis of the application of energy storage technology in the renewable energy grid-connected operation [J]. Energy Storage Science and Technology, 2025, 14(2): 879-882. |
[4] | Ye TIAN, Shanshan WANG, Xu YAO, Jiaxin LIU, Xiaodong HAN. The significance and development of the collaborative application of distribution network communication and distributed energy storage technology [J]. Energy Storage Science and Technology, 2025, 14(1): 190-192. |
[5] | Na WEN, Chengwei LIU, Xiaoyang ZHANG, Jian GAO, Liming MA. Research on the synergistic application of automation control and energy storage technology in smart grids [J]. Energy Storage Science and Technology, 2025, 14(1): 219-221. |
[6] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[7] | Jiahui HUANG, Zhufang KUANG. The forefront of the integration of artificial intelligence and energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. |
[8] | Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. |
[9] | Jing XU, Yuqi WANG, Xiao FU, Qifan YANG, Jingchen LIAN, Liqi WANG, Ruijuan XIAO. Discovery of new battery materials based on a big data approach [J]. Energy Storage Science and Technology, 2024, 13(9): 2920-2932. |
[10] | Yi ZHONG, Yan LENG, Sihui CHEN, Peiyi LI, Zhi ZOU, Yang LIU, Jiayu WAN. Accelerating battery research with retrieval-augmented large language models: Present and future [J]. Energy Storage Science and Technology, 2024, 13(9): 3214-3225. |
[11] | Ziyu LIU, Zekun JIANG, Wei QIU, Quan XU, Yingchun NIU, Chunming XU, Tianhang ZHOU. Application of artificial intelligence in long-duration redox flow batteries storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. |
[12] | Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence [J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197. |
[13] | Wentao ZHU, Yang ZHOU, Yimin XU, Tao SHI. Application and optimization of battery energy storage technology in new energy generation system [J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. |
[14] | Chu ZHANG, Dongcai CHEN, Xiangping CHEN, Yongxiang CAI. Economic benefit analysis of optimal allocation of energy storage in multiple application scenarios [J]. Energy Storage Science and Technology, 2024, 13(6): 2078-2088. |
[15] | Jian SUN, Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG. Summary of research on power storage technology based on heat pump at home and abroad [J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||