Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3198-3213.doi: 10.19799/j.cnki.2095-4239.2024.0635
Previous Articles Next Articles
Junyu JIAO1,2,3(), Quanquan ZHANG2(), Ningbo CHEN2, Jiyu WANG2, Qiudi LU2, Haohao DING2, Peng PENG3, Xiaohe SONG3, Fan ZHANG3, Jiaxin ZHENG1,3()
Received:
2024-07-08
Revised:
2024-07-28
Online:
2024-09-28
Published:
2024-09-20
Contact:
Jiaxin ZHENG
E-mail:jiaojunyu@eacomp.com;zhangquanquan@eacomp.com;zhengjx@pkusz.edu.cn
CLC Number:
Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries[J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213.
Table 3
Filtered features in cycle life task"
特征 | 名称 | 皮尔逊相关性系数 |
---|---|---|
Log_Var_Q | 等压点容量差方差 | 0.93 |
Log_IQR_dQdV | 等压点增量容量差四分位距 | 0.76 |
Log_IQR_Q | 等压点容量差四分位距 | 0.76 |
Final_peak_loc_dQdV | 结束增量容量曲线峰位置 | 0.72 |
Max_lower_area_voltage | 电压曲线下面积最大值 | 0.68 |
Log_Min_dQdV | 等压点增量容量差最小值 | 0.67 |
Log_Var_time | 等压点放电时间差方差 | 0.54 |
intercept_root | 均方根衰减模型截距 | 0.53 |
intercept_linear | 线性衰减模型截距 | 0.52 |
Upper_area_voltage | 电压曲线上面积差值 | 0.46 |
Discharge_cc_time_final | 结束循环恒流放电时间 | 0.34 |
Initial_SoH | 初始SOH | 0.33 |
1 | XU X D, HAN X B, LU L G, et al. Challenges and opportunities toward long-life lithium-ion batteries[J]. Journal of Power Sources, 2024, 603: 234445. DOI: 10.1016/j.jpowsour. 2024. 234445. |
2 | FRITH J T, LACEY M J, ULISSI U. A non-academic perspective on the future of lithium-based batteries[J]. Nature Communications, 2023, 14(1): 420. DOI: 10.1038/s41467-023-35933-2. |
3 | SULZER V, MOHTAT P, AITIO A, et al. The challenge and opportunity of battery lifetime prediction from field data[J]. Joule, 2021, 5(8): 1934-1955. DOI: 10.1016/j.joule.2021.06.005. |
4 | FINEGAN D P, ZHU J E, FENG X N, et al. The application of data-driven methods and physics-based learning for improving battery safety[J]. Joule, 2021, 5(2): 316-329. DOI: 10.1016/j.joule.2020.11.018. |
5 | JIAO J Y, LAI G M, QIN S H, et al. Tuning of surface morphology in Li layered oxide cathode materials[J]. Acta Materialia, 2022, 238: 118229. DOI: 10.1016/j.actamat.2022.118229. |
6 | JIAO J Y, LAI G M, ZHAO L, et al. Self-healing mechanism of lithium in lithium metal[J]. Advanced Science, 2022, 9(12): e2105574. DOI: 10.1002/advs.202105574. |
7 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. DOI: 10.1038/s41560-019-0356-8. |
8 | LU Y F, LI K, HAN X B, et al. A method of cell-to-cell variation evaluation for battery packs in electric vehicles with charging cloud data[J]. eTransportation, 2020, 6: 100077. DOI: 10.1016/j.etran.2020.100077. |
9 | LU J H, XIONG R, TIAN J P, et al. Deep learning to estimate lithium-ion battery state of health without additional degradation experiments[J]. Nature Communications, 2023, 14(1): 2760. DOI: 10.1038/s41467-023-38458-w. |
10 | ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1): 2261. DOI: 10.1038/s41467-022-29837-w. |
11 | ZHAO J Y, LING H P, WANG J B, et al. Data-driven prediction of battery failure for electric vehicles[J]. iScience, 2022, 25(4): 104172. DOI: 10.1016/j.isci.2022.104172. |
12 | ZHAO J Y, FENG X N, TRAN M K, et al. Battery safety: Fault diagnosis from laboratory to real world[J]. Journal of Power Sources, 2024, 598: 234111. DOI: 10.1016/j.jpowsour. 2024. 234111. |
13 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. DOI: 10.1016/j.rser.2019.109254. |
14 | Battery quality analytics for cell manufacturers | Voltaiq[EB/OL]. [2024-07-19]. https://www.voltaiq.com/ |
15 | TWAICE battery analytics software[EB/OL]. [2024-07-19]. https://www.twaice.com/ |
16 | BatteryArchive.org[EB/OL]. [2024-07-19]. https://batteryarchive.org/ |
17 | SAHA B, GOEBEL K. NASA Ames Prognostics Data Repository. NASA Ames Research Center. Battery Data Set[EB/OL]. (2007).[2024-06-01]. https://phm-datasets.s3.amazonaws.com/NASA/5.+Battery+Data+Set.zip |
18 | YE M, WEI M, WANG Q, et al. State of health estimation for lithium-ion batteries based on incremental capacity analysis under slight overcharge voltage[J]. Frontiers in Energy Research, 2022, 10: 1001505. DOI: 10.3389/fenrg.2022.1001505. |
19 | SUN H L, YANG D F, DU J X, et al. Prediction of Li-ion battery state of health based on data-driven algorithm[J]. Energy Reports, 2022, 8: 442-449. DOI: 10.1016/j.egyr.2022.11.134. |
20 | XIONG W, XU G, LI Y M, et al. Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curves[J]. Journal of Energy Storage, 2023, 62: 106790. DOI: 10.1016/j.est.2023.106790. |
21 | AITIO A, HOWEY D A. Predicting battery end of life from solar off-grid system field data using machine learning[J]. Joule, 2021, 5(12): 3204-3220. DOI: 10.1016/j.joule.2021.11.006. |
22 | YU C, ZHU J G, WEI X Z, et al. Research on temperature inconsistency of large-format lithium-ion batteries based on the electrothermal model[J]. World Electric Vehicle Journal, 2023, 14(10): 271. DOI: 10.3390/wevj14100271. |
23 | TIAN Y, SHE Y, WU J F, et al. Thermal runaway propagation characteristics of lithium-ion batteries with a non-uniform state of charge distribution[J]. Journal of Solid State Electrochemistry, 2023, 27(8): 2185-2197. DOI: 10.1007/s10008-023-05496-9. |
24 | FENG F, HU X S, HU L, et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 102-113. DOI: 10.1016/j.rser.2019.05.042. |
25 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. DOI: 10.1016/j.jpowsour.2015.06.087. |
26 | XIA B, SHANG Y L, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1-10. DOI: 10.1016/j.jpowsour. 2016.11.007. |
27 | XUE Q, LI G, ZHANG Y J, et al. Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution[J]. Journal of Power Sources, 2021, 482: 228964. DOI: 10.1016/j.jpowsour.2020.228964. |
28 | WANG Z L, ZHAO X Y, FU L, et al. A review on rapid state of health estimation of lithium-ion batteries in electric vehicles[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103457. DOI: 10.1016/j.seta.2023.103457. |
29 | SALDAÑA G, MARTÍN J I S, ZAMORA I, et al. Empirical electrical and degradation model for electric vehicle batteries[J]. IEEE Access, 2020, 8: 155576-155589. DOI: 10.1109/ACCESS. 2020.3019477. |
30 | LIU S L, DONG X, YU X D, et al. A method for state of charge and state of health estimation of lithium-ion battery based on adaptive unscented Kalman filter[J]. Energy Reports, 2022, 8: 426-436. DOI: 10.1016/j.egyr.2022.09.093. |
31 | LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. DOI: 10.1016/j.apenergy.2018.01.011. |
32 | CHEN Z, SUN M M, SHU X, et al. Online state of health estimation for lithium-ion batteries based on support vector machine[J]. Applied Sciences, 2018, 8(6): 925. DOI: 10.3390/app8060925. |
33 | XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. DOI: 10.1016/j.microrel.2012.12.003. |
34 | BAGHDADI I, BRIAT O, GYAN P, et al. State of health assessment for lithium batteries based on voltage-time relaxation measure[J]. Electrochimica Acta, 2016, 194: 461-472. DOI: 10.1016/j.electacta.2016.02.109. |
35 | YAO J W, POWELL K, GAO T. A two-stage deep learning framework for early-stage lifetime prediction for lithium-ion batteries with consideration of features from multiple cycles[J]. Frontiers in Energy Research, 2022, 10: 1059126. DOI: 10.3389/fenrg.2022.1059126. |
36 | ZHAO J, ZHU Y, ZHANG B, et al. Review of state estimation and remaining useful life prediction methods for lithium-ion batteries[J]. Sustainability, 2023, 15(6): 5014. |
37 | WU T Z, ZHAO T, XU S Y. Prediction of remaining useful life of the lithium-ion battery based on improved particle filtering[J]. Frontiers in Energy Research, 2022, 10: 863285. DOI: 10.3389/fenrg.2022.863285. |
38 | WANG X X, YE P L, LIU S R, et al. Research progress of battery life prediction methods based on physical model[J]. Energies, 2023, 16(9): 3858. DOI: 10.3390/en16093858. |
39 | PARK K, CHOI Y, CHOI W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles[J]. IEEE Access, 2020, 8: 20786-20798. DOI: 10.1109/ACCESS.2020.2968939. |
40 | ZHANG H, ALTAF F, WIK T. Battery capacity knee-onset identification and early prediction using degradation curvature[J]. Journal of Power Sources, 2024, 608: 234619. DOI: 10.1016/j.jpowsour.2024.234619. |
41 | IBRAHEEM R, WU Y, LYONS T, et al. Early prediction of lithium-ion cell degradation trajectories using signatures of voltage curves up to 4-minute sub-sampling rates[J]. Applied Energy, 2023, 352: 121974. DOI: 10.1016/j.apenergy.2023.121974. |
42 | BACHMANN R, MIZRAHI D, ATANOV A, et al. MultiMAE: multi-modal multi-task masked autoencoders[M]//Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 348-367. DOI: 10.1007/978-3-031-19836-6_20. |
[1] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[2] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[3] | Jiahui HUANG, Zhufang KUANG. The forefront of the integration of artificial intelligence and energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. |
[4] | Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model [J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058. |
[5] | Jing XU, Yuqi WANG, Xiao FU, Qifan YANG, Jingchen LIAN, Liqi WANG, Ruijuan XIAO. Discovery of new battery materials based on a big data approach [J]. Energy Storage Science and Technology, 2024, 13(9): 2920-2932. |
[6] | Ziyu LIU, Zekun JIANG, Wei QIU, Quan XU, Yingchun NIU, Chunming XU, Tianhang ZHOU. Application of artificial intelligence in long-duration redox flow batteries storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. |
[7] | Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence [J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197. |
[8] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[9] | Kaiyue YANG, Xinbing XIE, Xiaozhong DU. Exploration of lithium battery electrode calendering process based on discrete element method [J]. Energy Storage Science and Technology, 2024, 13(8): 2570-2579. |
[10] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
[11] | Jinwei SONG, Donghai XUAN, Weijia WANG, Fei SUN, Yan SONG. Operation and maintenance detection technology for energy storage transformers based on voiceprint features [J]. Energy Storage Science and Technology, 2024, 13(8): 2758-2760. |
[12] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[13] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[14] | Yuhao WANG, Zhiyong LI, Xin GUO. Applications and challenges of polymer-based electrolytes in low-temperature solid-state lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2243-2258. |
[15] | Hui FANG. Functional safety guarantee strategy for low temperature lithium battery energy storage system under network analysis mode [J]. Energy Storage Science and Technology, 2024, 13(7): 2447-2449. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||