Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3182-3197.doi: 10.19799/j.cnki.2095-4239.2024.0698
Previous Articles Next Articles
Yingying XIE1(), Bin DENG1, Yuzhi ZHANG1, Xiaoxu WANG1(), Linfeng ZHANG1,2
Received:
2024-07-10
Revised:
2024-08-28
Online:
2024-09-28
Published:
2024-09-20
Contact:
Xiaoxu WANG
E-mail:xieyy@dp.tech;wangxx@dp.tech
CLC Number:
Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence[J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197.
Fig. 4
Application of cross-scale simulation algorithm in battery R&D: (a) multi-scale algorithm; (b) DeePMD breaks through the bottleneck of traditional modeling methods to develop a new anode system: reproduces the voltage plateau gap between crystalline and amorphous, and the latent heat of phase transition between a/c and Li15Si4 in the initial state of lithiation is 0.26 V, corresponding to the voltage lag affected by crystallization[45]; (c) DeePMD is used to reveal the diffusion mechanism of lithium ions in the main components of lithium-ion battery SEI membranes[46]; (d) AI-assisted first-principles molecular dynamics studies of lithium-ion transport processes in SEI[47]"
Fig. 5
Design and development of data-driven batteries for pre-trained models: (a)—(e) first-principles precision solid-state electrolyte pre-trained models study microscopic laws in depth to accurately predict the conductivity and migration barriers of Li examples[58]; (f)—(h) Prediction of melting point, boiling point and dielectric constant based on Uni-Mol model[55]; (i)—(k) Coulombic efficiency and conductivity of electrolyte formulations were predicted based on the Uni-ELF model[55]"
Fig. 10
The platform-based intelligent R&D of batteries under the paradigm of AI for Science realizes a new R&D paradigm of "integration of software and hardware, combination of experiments and computational simulations", creates a smart large device and super laboratory for the whole life cycle of batteries, and comprehensively empowers the upgrading of the battery industry"
1 | 魏佳, 严菁. 电力系统脱碳新动能电化学储能技术创新趋势报告[R]. 北京: 绿色和平, 2022. |
2 | 皮秀. 动力电池强势依旧,电池材料大有可为——动力电池产业链全景图[R]. 深圳: 平安证券研究所, 2023. |
3 | 张林峰, 孙伟杰, 李鑫宇, 等. 科学智能(AI4S)全球发展观察与展望2023版[R]. 北京: 北京科学智能研究院, 北京深势科技有限公司, 络绎科学, 2023. |
4 | Synopsys. What is EDA (Electronic Design Automation)?[EB/OL]. [2024-07-25]. https://www.synopsys.com/glossary/what-is-electronic-design-automation.html. |
5 | GREENWOOD M, WROGEMANN J M, SCHMUCH R, et al. The battery component readiness level (BC-RL) framework: A technology-specific development framework[J]. Journal of Power Sources Advances, 2022, 14: 100089. DOI: 10.1016/j.powera. 2022.100089. |
6 | COOPER R G. Predevelopment activities determine new product success[J]. Industrial Marketing Management, 1988, 17(3): 237-247. DOI: 10.1016/0019-8501(88)90007-7. |
7 | GREWAL A, KATARIA H, DHAWAN I. Literature search for research planning and identification of research problem[J]. Indian Journal of Anaesthesia, 2016, 60(9): 635-639. DOI: 10.4103/0019-5049.190618. |
8 | KENDIG C E. What is proof of concept research and how does it generate epistemic and ethical categories for future scientific practice?[J]. Science and Engineering Ethics, 2016, 22(3): 735-753. DOI: 10.1007/s11948-015-9654-0. |
9 | GRANT P S, GREENWOOD D, PARDIKAR K, et al. Roadmap on Li-ion battery manufacturing research[J]. Journal of Physics: Energy, 2022, 4(4): 042006. DOI: 10.1088/2515-7655/ac8e30. |
10 | XIAO J, SHI F F, GLOSSMANN T, et al. From laboratory innovations to materials manufacturing for lithium-based batteries[J]. Nature Energy, 2023, 8: 329-339. DOI: 10.1038/s41560-023-01221-y. |
11 | NÖLLE R, BELTROP K, HOLTSTIEGE F, et al. A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup[J]. Materials Today, 2020, 32: 131-146. DOI: 10.1016/j.mattod.2019.07.002. |
12 | MEUTZNER F, NESTLER T, ZSCHORNAK M, et al. Computational analysis and identification of battery materials[J]. Physical Sciences Reviews, 2019, 4(1). DOI: 10.1515/psr-2018-0044. |
13 | 杜雨, 王谟松, 张孜铭. AI for Science:人工智能驱动科学创新[M]. 北京:电子工业出版社, 2024. |
14 | LOMBARDO T, DUQUESNOY M, EL-BOUYSIDY H, et al. Artificial intelligence applied to battery research: Hype or reality?[J]. Chemical Reviews, 2022, 122(12): 10899-10969. DOI: 10.1021/acs.chemrev.1c00108. |
15 | HUBBARD K E, DUNBAR S D. Perceptions of scientific research literature and strategies for reading papers depend on academic career stage[J]. PLoS One, 2017, 12(12): e0189753. DOI: 10.1371/journal.pone.0189753. |
16 | HALEVI G, MOED H, BAR-ILAN J. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the literature[J]. Journal of Informetrics, 2017, 11(3): 823-834. DOI: 10.1016/j.joi.2017.06.005. |
17 | BIRKLE C, PENDLEBURY D A, SCHNELL J, et al. Web of Science as a data source for research on scientific and scholarly activity[J]. Quantitative Science Studies, 2020, 1(1): 363-376. DOI: 10.1162/qss_a_00018. |
18 | Google Scholar. Battery[EB/OL]. [2024-07-20]. https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=battery&btnG=. |
19 | THISSANDIER F, BARON N. Status of the battery patents 2018[R]. France: KnowMade, 2018. |
20 | POHL H, MARKLUND M. Battery research and innovation—a study of patents and papers[J]. World Electric Vehicle Journal, 2024, 15(5): 193. DOI: 10.3390/wevj15050193. |
21 | GABRIELSON S W. SciFinder[J]. Journal of the Medical Library Association, 2018, 106(4): 588. DOI: 10.5195/jmla.2018.515. |
22 | GOODMAN J. Computer software review: Reaxys[J]. Journal of Chemical Information and Modeling, 2009, 49(12): 2897-2898. DOI: 10.1021/ci900437n. |
23 | ROUMELIOTIS K I, TSELIKAS N D. ChatGPT and open-AI models: A preliminary review[J]. Future Internet, 2023, 15(6): 192. DOI: 10.3390/fi15060192. |
24 | WU T Y, HE S Z, LIU J P, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136. DOI: 10.1109/JAS.2023.123618. |
25 | DAGDELEN J, DUNN A, LEE S, et al. Structured information extraction from scientific text with large language models[J]. Nature Communications, 2024, 15: 1418. DOI: 10.1038/s41467-024-45563-x. |
26 | NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning[C]// Proceedings of the 28th international conference on machine learning (ICML-11). 2011: 689-696. |
27 | CAI H X, CAI X C, YANG S W, et al. Uni-SMART: Universal science multimodal analysis and research transformer[EB/OL]. [2024-05-01]. https://arxiv.org/abs/2403.10301v2. |
28 | CAI H X, CAI X C, CHANG J H, et al. SciAssess: Benchmarking LLM proficiency in scientific literature analysis[EB/OL]. [2024-05-01]. https://arxiv.org/abs/2403.01976v4. |
29 | Hugging Face. Paper: Uni-SMART[EB/OL]. [2024-07-20]. https://huggingface.co/posts/akhaliq/187303171643734. |
30 | DE LA TORRE-LÓPEZ J, RAMÍREZ A, ROMERO J R. Artificial intelligence to automate the systematic review of scientific literature[J]. Computing, 2023, 105(10): 2171-2194. DOI: 10.1007/s00607-023-01181-x. |
31 | PANDA S. Enhancing PDF interaction for a more engaging user experience in library: Introducing ChatPDF[J]. IP Indian Journal of Library Science and Information Technology, 2023, 8(1): 20-25. DOI: 10.18231/j.ijlsit.2023.004. |
32 | Anthropic. Meet claude[EB/OL]. [2023-11-30]. https://www.anthropic.com/claude. |
33 | ACHIAM J, ADLER S, AGARWAL S, et al. Gpt-4 technical report[J]. arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774. |
34 | Uni-Finder. Uni-Finder[EB/OL]. [2024-08-24]. https://uni-finder.dp.tech/. |
35 | 李佳林, 丁秀金, 赵江宇. 化学电池行业深度报告:缘起,挑战与机遇[R]. 势乘资本, 光锥智能, 2022. |
36 | ENG A Y S, SONI C B, LUM Y, et al. Theory-guided experimental design in battery materials research[J]. Science Advances, 2022, 8(19): eabm2422. DOI: 10.1126/sciadv.abm2422. |
37 | ZHANG L F, HAN J Q, WANG H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics[J]. Physical Review Letters, 2018, 120(14): 143001. DOI: 10.1103/PhysRevLett.120.143001. |
38 | HAN J Q, ZHANG L F, CAR R, et al. Deep potential: A general representation of a many-body potential energy surface[EB/OL]. 2017: 1707.01478.[2024-08-24]. https://arxiv.org/abs/1707.01478v2. |
39 | WEN T Q, ZHANG L F, WANG H, et al. Deep potentials for materials science[J]. Materials Futures, 2022, 1(2): 022601. DOI: 10.1088/2752-5724/ac681d. |
40 | CHEN Y X, ZHANG L F, WANG H, et al. DeePKS: A comprehensive data-driven approach toward chemically accurate density functional theory[J]. J Chem Theory Comput, 2021, 17(1): 170-181. DOI: 10.1021/acs.jctc.0c00872. |
41 | LI W F, OU Q, CHEN Y X, et al. DeePKS + ABACUS as a bridge between expensive quantum mechanical models and machine learning potentials[J]. The Journal of Physical Chemistry A, 2022, 126(49): 9154-9164. DOI: 10.1021/acs.jpca.2c05000. |
42 | WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184. DOI: 10.1016/j.cpc.2018.03.016. |
43 | LU D H, WANG H, CHEN M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy[J]. Computer Physics Communications, 2021, 259: 107624. DOI: 10.1016/j.cpc.2020.107624. |
44 | ZHANG L F, HAN J Q, WANG H, et al. DeePCG: Constructing coarse-grained models via deep neural networks[J]. The Journal of Chemical Physics, 2018, 149(3): 034101. DOI: 10.1063/1.5027645. |
45 | FU F J, WANG X X, ZHANG L F, et al. Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes[J]. Advanced Functional Materials, 2023, 33(37): 2303936. DOI: 10.1002/adfm.202303936. |
46 | REN F C, WU Y Q, ZUO W H, et al. Visualizing the SEI formation between lithium metal and solid-state electrolyte[J]. Energy & Environmental Science, 2024, 17(8): 2743-2752. DOI: 10.1039/D3EE03536K. |
47 | GUPTA S, YANG X C, CEDER G. What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture[J]. Nature Communications, 2023, 14(1): 6884. DOI: 10.1038/s41467-023-42538-2. |
48 | HU T P, DAI F Z, ZHOU G B, et al. Unraveling the dynamic correlations between transition metal migration and the oxygen dimer formation in the highly delithiated LixCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2023, 14(15): 3677-3684. DOI: 10.1021/acs.jpclett.3c00506. |
49 | HU T P, TIAN J X, DAI F Z, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases[J]. Journal of the American Chemical Society, 2023, 145(2): 1327-1333. DOI: 10.1021/jacs.2c11521. |
50 | WANG F, SUN Y, CHENG J. Switching of redox levels leads to high reductive stability in water-in-salt electrolytes[J]. Journal of the American Chemical Society, 2023, 145(7): 4056-4064. DOI: 10.1021/jacs.2c11793. |
51 | ZHANG D, BI H R, DAI F Z, et al. DPA-1: Pretraining of attention-based deep potential model for molecular simulation[EB/OL]. [2024-07-02]. https://arxiv.org/abs/2208.08236v4. |
52 | ZHANG D, LIU X Z J, ZHANG X Y, et al. DPA-2: Towards a universal large atomic model for molecular and material simulation[J]. arXiv:2312.15492. https://doi.org/10.48550/arXiv. 2312.15492. |
53 | ZHOU G, GAO Z F, DING Q K, et al. Uni-mol: A universal 3d molecular representation learning framework[C]// International Conference on Learning Representations. ICLR, 2023. |
54 | JI X H, WANG Z, GAO Z F, et al. Uni-Mol2: Exploring molecular pretraining model at scale[EB/OL]. [2024-07-02]. https://arxiv.org/abs/2406.14969v2. |
55 | ZENG B S, CHEN S A, LIU X X, et al. Uni-ELF: A multi-level representation learning framework for electrolyte formulation design[EB/OL]. [2024-07-02]. https://arxiv.org/abs/2407. 06152v1. |
56 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. DOI: 10.1038/s41560-019-0356-8. |
57 | MA G J, XU S P, JIANG B B, et al. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning[J]. Energy & Environmental Science, 2022, 15(10): 4083-4094. DOI: 10.1039/D2EE01676A. |
58 | WANG R Y, GUO M Y, GAO Y X, et al. A pre-trained deep potential model for sulfide solid electrolytes with broad coverage and high accuracy[EB/OL]. 2024: 2406.18263.[2024-08-24]. https://arxiv.org/abs/2406.18263v2. |
59 | Bohrium[EB/OL]. [2024-07-20]. https://bohrium.dp.tech/apps. |
60 | KLUYVER T, RAGAN-KELLEY B, PÉREZ F, et al. Jupyter Notebooks-A publishing format for reproducible computational workflows[M]// Positioning and power in academic publishing: Players, agents and agendas. IOS press, 2016: 87-90. |
61 | LIU X, HAN Y B, LI Z Y, et al. Dflow, a Python framework for constructing cloud-native AI-for-Science workflows[EB/OL]. 2024: [2024-07-02]. https://arxiv.org/abs/2404.18392v1. |
62 | YAKUTOVICH A V, EIMRE K, SCHÜTT O, et al. AiiDAlab-An ecosystem for developing, executing, and sharing scientific workflows[J]. Computational Materials Science, 2021, 188: 110165. DOI: 10.1016/j.commatsci.2020.110165. |
63 | Hugging Face. Hugging Face Spaces[EB/OL]. [2024-07-20]. https://huggingface.co/spaces. |
64 | Piloteye[EB/OL]. [2024-07-20]. https://bohrium.dp.tech/org/piloteye. |
65 | JOKAR A, RAJABLOO B, DÉSILETS M, et al. Review of simplified pseudo-two-dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 44-55. DOI: 10.1016/j.jpowsour.2016.07.036. |
66 | HAN X B, OUYANG M G, LU L G, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. DOI: 10.1016/j.jpowsour.2013.11.029. |
67 | JIA X Y, ZHANG C P, WANG L Y, et al. The degradation characteristics and mechanism of Li[Ni0.5Co0.2Mn0.3]O2 batteries at different temperatures and discharge current rates[J]. Journal of the Electrochemical Society, 2020, 167(2): 020503. DOI: 10.1149/1945-7111/ab61e9. |
68 | SATYAVANI T V S L, SRINIVAS KUMAR A, SUBBA RAO P S V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 178-188. DOI: 10.1016/j.jestch.2015.06.002. |
69 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. DOI: 10.1023/A:1010933404324. |
70 | FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. DOI: 10.1214/aos/1013203451. |
71 | SZYMANSKI N J, BARTEL C J. Computationally guided synthesis of battery materials[J]. ACS Energy Letters, 2024, 9(6): 2902-2911. DOI: 10.1021/acsenergylett.4c00821. |
72 | GIEHL C, SCHÄFFLER M, SEGETS D, et. al. Material characterization for battery cell manufacturing along the process chain[R/OL]. Germany: Anton Paar[2024-07-20]. https://www.theengineer.co.uk/media/qxankjlh/material-characterization-for-battery-cell-manufacturing.pdf |
73 | KISSINGER P T, HEINEMAN W R. Cyclic voltammetry[J]. Journal of Chemical Education, 1983, 60(9): 702. DOI: 10.1021/ed060p702. |
74 | DEES D W, KAWAUCHI S, ABRAHAM D P, et al. Analysis of the galvanostatic intermittent titration technique (GITT) as applied to a lithium-ion porous electrode[J]. Journal of Power Sources, 2009, 189(1): 263-268. DOI: 10.1016/j.jpowsour.2008.09.045. |
75 | CHANG B Y, PARK S M. Electrochemical impedance spectroscopy[J]. Annual Review of Analytical Chemistry, 2010, 3: 207-229. DOI: 10.1146/annurev.anchem.012809.102211. |
76 | EPP J. X-ray diffraction (XRD) techniques for materials characterization[M]// Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Amsterdam: Elsevier, 2016: 81-124. DOI: 10.1016/b978-0-08-100040-3.00004-3. |
77 | ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, et al. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Applied Surface Science, 2011, 257(21): 9110-9119. DOI: 10.1016/j.apsusc.2011.05.108. |
78 | HUANG R, IKUHARA Y. STEM characterization for lithium-ion battery cathode materials[J]. Current Opinion in Solid State and Materials Science, 2012, 16(1): 31-38. DOI: 10.1016/j.cossms. 2011.08.002. |
79 | ZHANG Z, FOUCHARD D, REA J R. Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20. DOI: 10.1016/S0378-7753(97)02611-6. |
80 | VELUCHAMY A, DOH C H, KIM D H, et al. Thermal analysis of LixCoO2 cathode material of lithium ion battery[J]. Journal of Power Sources, 2009, 189(1): 855-858. DOI: 10.1016/j.jpowsour. 2008.07.090. |
81 | RAHMANIAN F, VOGLER M, WÖLKE C, et al. Conductivity experiments for electrolyte formulations and their automated analysis[J]. Scientific Data, 2023, 10(1): 43. DOI: 10.1038/s41597-023-01936-3. |
82 | HEMKER K J, SHARPE W N Jr. Microscale characterization of mechanical properties[J]. Annual Review of Materials Research, 2007, 37: 93-126. DOI: 10.1146/annurev.matsci.36.062705.134551. |
83 | JAGUEMONT J, BARDÉ F. A critical review of lithium-ion battery safety testing and standards[J]. Applied Thermal Engineering, 2023, 231: 121014. DOI: 10.1016/j.applthermaleng.2023.121014. |
84 | SU M, ZHANG H T, SCHAWINSKI K, et al. Generative adversarial networks as a tool to recover structural information from cryo-electron microscopy data[EB/OL]. BioRxiv, 2018: 256792. [2024-07-02]. https://www.biorxiv.org/content/10.1101/256792v1. |
85 | PRATT H, WILLIAMS B, COENEN F, et al. FCNN: Fourier convolutional neural networks[C]// Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017. Springer International Publishing, 2017: 786-798. |
86 | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28. |
87 | BOTIFOLL M, PINTO-HUGUET I, ARBIOL J. Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook[J]. Nanoscale Horizons, 2022, 7(12): 1427-1477. DOI: 10.1039/d2nh00377e. |
88 | BALS J, EPPLE M. Artificial scanning electron microscopy images created by generative adversarial networks from simulated particle assemblies[J]. Advanced Intelligent Systems, 2023, 5(7): 2300004. DOI: 10.1002/aisy.202300004. |
89 | TURETSKYY A. Data analytics in battery production systems[D]. Dissertation, Braunschweig: Technische Universität Braunschweig, 2022. |
90 | GUO F, HUANG G S, ZHANG W C, et al. State of health estimation method for lithium batteries based on electrochemical impedance spectroscopy and pseudo-image feature extraction[J]. Measurement, 2023, 220: 113412. DOI: 10.1016/j.measurement. 2023.113412. |
91 | KOZA J R. Genetic programming as a means for programming computers by natural selection[J]. Statistics and Computing, 1994, 4(2): 87-112. DOI: 10.1007/BF00175355. |
92 | CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 785-794. DOI: 10.1145/2939672.2939785. |
93 | WIND J, ULVESTAD A, ABDELHAMID M, et al. Cellpy-An open-source library for processing andanalysis of battery testing data[J]. Journal of Open Source Software, 2024, 9(97): 6236. DOI: 10.21105/joss.06236. |
94 | MURBACH M, GERWE B, DAWSON-ELLI N, et al. Impedance.py: A Python package for electrochemical impedance analysis[J]. Journal of Open Source Software, 2020, 5(52): 2349. DOI: 10.21105/joss.02349. |
95 | HASSINI M, REDONDO-IGLESIAS E, VENET P. Lithium-ion battery data: From production to prediction[J]. Batteries, 2023, 9(7): 385. DOI: 10.3390/batteries9070385. |
[1] | Xingguang CHEN, Yifan SHEN, Yuxin SHAO, Yuejiu ZHENG, Tao SUN, Xin LAI, Kai SHEN, Xuebing HAN. Capacity identification method for LiFePO4 batteries with specific optimization in real vehicle applications [J]. Energy Storage Science and Technology, 2024, 13(9): 2963-2971. |
[2] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[3] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[4] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[5] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[6] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[7] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[8] | Jinbao FAN, Na LI, Yikun WU, Chunwang HE, Le YANG, Weili SONG, Haosen CHEN. Digital twin technology for energy batteries at the cell level [J]. Energy Storage Science and Technology, 2024, 13(9): 3112-3133. |
[9] | Yajie LI, Yiping WANG, Bin CHEN, Hailong LIN, Geng ZHANG, Siqi SHI. Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate [J]. Energy Storage Science and Technology, 2024, 13(9): 2864-2870. |
[10] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[11] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[12] | Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. |
[13] | Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model [J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058. |
[14] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[15] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||