Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3112-3133.doi: 10.19799/j.cnki.2095-4239.2024.0596
Previous Articles Next Articles
Jinbao FAN1(), Na LI2, Yikun WU3, Chunwang HE1, Le YANG1, Weili SONG1, Haosen CHEN1()
Received:
2024-06-10
Revised:
2024-07-14
Online:
2024-09-28
Published:
2024-09-20
Contact:
Haosen CHEN
E-mail:fan_jinbao@foxmail.com;chenhs@bit.edu.cn
CLC Number:
Jinbao FAN, Na LI, Yikun WU, Chunwang HE, Le YANG, Weili SONG, Haosen CHEN. Digital twin technology for energy batteries at the cell level[J]. Energy Storage Science and Technology, 2024, 13(9): 3112-3133.
Fig. 2
(a)The schematic and photograph of integrated functional electrode[25]; (b) The configuration of the optical fiber sensor implanted inside a commercial 18650 cell[29]; (c) The schematic illustration of wireless signal transmission[41]; (d) The schematic diagram of a full cell with a single optical fiber[52]; (e) The schematic of the in-situ strain measurement inside a cylindrical Li-ion battery[55]"
Fig. 3
(a) The gas pressure sensor on the top of the prismatic lithium-ion battery[57]; (b) The relative pressure sensor attached onto the perforated negative electrode of the cylindrical lithium-ion battery[58]; (c) The commercial lithium-ion battery with an implanted MEMS fiber-optic pressure sensor[59]; (d) Rapid measurement of gases inside a lithium-ion battery based on multiple NDIR sensors in a sealed tank[61]"
Fig. 4
(a) Schematic illustration of P2D model during discharge[79]; (b) Schematic illustration of SPM model during discharge[79]; (c) 2D simulation of temperature distribution inside a 18650 cell at the end of 1C (left-hand side) and 2C (right-hand side) discharge[71]; (d) 3D simulation of total heat generation (left-hand side) and temperature distribution (right-hand side) of a pouch battery at the end of 3C discharge[76]"
Fig. 5
(a) 2D simulation of von Mises stress in the fully charged state for a cylindrical cell[83]; (b) 3D simulation of displacement distribution of a pouch battery at the end of charge[85]; (c) Displacement distribution (left-hand side) and von Mises stress distribution (right-hand side) of a pouch cell at the end of charge[86]; (d) Temperature (left-hand side) and the projected stress fields (right-hand side) inside the jellyroll at the end of discharge under the forced convection condition[88]; (e) Temperature (left-hand side) and the projected stress fields (right-hand side) in jellyrolls for the nonisothermal case after being charged for 50 min[89]"
1 | 陈桂泉, 沙盈吟, 赵威风, 等. 动力电池老化诱发热失控机理仿真[J]. 储能科学与技术, 2022, 11(12): 3987-3998. DOI: 10.19799/j.cnki.2095-4239.2022.0396. |
CHEN G Q, SHA Y Y, ZHAO W F, et al. Simulation study on the mechanism and process of thermal runaway induced by aging of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3987-3998. DOI: 10.19799/j.cnki.2095-4239. 2022.0396. | |
2 | ZHAO J Y, FENG X N, PANG Q Q, et al. Battery safety: Machine learning-based prognostics[J]. Progress in Energy and Combustion Science, 2024, 102: 101142. DOI: 10.1016/j.pecs. 2023.101142. |
3 | University of Texas at Austin Mechanical Engineering Cockrell School of Engineering. Battery fire and explosion incidents: Database tools[EB/OL]. [2024-07-14]. http://tools.utfireresearch.com/apps/incident_map. |
4 | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239.2023.0296. |
ZAN W D, ZHANG R, DING F. Development and application of electrochemical models for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239.2023.0296. | |
5 | YU J S, SONG Y, TANG D Y, et al. A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems, 2021, 58: 293-304. DOI: 10.1016/j.jmsy.2020.07.005. |
6 | TORZONI M, TEZZELE M, MARIANI S, et al. A digital twin framework for civil engineering structures[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116584. DOI: 10.1016/j.cma.2023.116584. |
7 | YANG C, CAI B P, WU Q B, et al. Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data[J]. Journal of Industrial Information Integration, 2023, 33: 100469. DOI: 10.1016/j.jii.2023.100469. |
8 | LIU S Z, QI Y S, GAO X J, et al. Transfer learning-based multiple digital twin-assisted intelligent mechanical fault diagnosi[J]. Measurement Science and Technology, 2024, 35(2): 025133. DOI: 10.1088/1361-6501/ad0683. |
9 | WANG M M, FENG S Z, INCECIK A, et al. Structural fatigue life prediction considering model uncertainties through a novel digital twin-driven approach[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114512. DOI: 10.1016/j.cma.2021.114512. |
10 | JANELIUKSTIS R, MCGUGAN M. Control of damage-sensitive features for early failure prediction of wind turbine blades[J]. Structural Control and Health Monitoring, 2022, 29(1). DOI: 10.1002/stc.2852. |
11 | LI W H, RENTEMEISTER M, BADEDA J, et al. Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation[J]. Journal of Energy Storage, 2020, 30: 101557. DOI: 10.1016/j.est. 2020.101557. |
12 | QU X, SONG Y, LIU D, et al. Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model[J]. Microelectronics Reliability, 2020, 114: 113857. DOI: 10.1016/j.microrel.2020.113857. |
13 | MERKLE L, PÖTHIG M, SCHMID F. Estimate e-golf battery state using diagnostic data and a digital twin[J]. Batteries, 2021, 7(1): 15. DOI: 10.3390/batteries7010015. |
14 | YANG S C, ZHANG Z J, CAO R, et al. Implementation for a cloud battery management system based on the CHAIN framework[J]. Energy and AI, 2021, 5: 100088. DOI: 10.1016/j.egyai. 2021.100088. |
15 | WANG Y J, XU R L, ZHOU C J, et al. Digital twin and cloud-side-end collaboration for intelligent battery management system[J]. Journal of Manufacturing Systems, 2022, 62: 124-134. DOI: 10.1016/j.jmsy.2021.11.006. |
16 | TANG H, WU Y C, CAI Y F, et al. Design of power lithium battery management system based on digital twin[J]. Journal of Energy Storage, 2022, 47: 103679. DOI: 10.1016/j.est.2021.103679. |
17 | JAFARI S, BYUN Y C. Prediction of the battery state using the digital twin framework based on the battery management system[J]. IEEE Access, 2022, 10: 124685-124696. DOI: 10.1109/ACCESS.2022.3225093. |
18 | GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference<BR>20th AIAA/ASME/AHS Adaptive Structures Conference<BR>14th AIAA. Honolulu, Hawaii. Reston, Virigina: AIAA, 2012: AIAA2012-1818. DOI: 10.2514/6.2012-1818. |
19 | PENG Y, ZHANG X L, SONG Y C, et al. A low cost flexible digital twin platform for spacecraft lithium-ion battery pack degradation assessment[C]//2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). May 20-23, 2019, Auckland, New Zealand. IEEE, 2019: 1-6. DOI: 10.1109/I2MTC.2019.8827160. |
20 | SONG J H, LIM S H, KIM K G, et al. Digital-twin-driven diagnostics of crack propagation in a single LiNi0.7Mn0.15Co0.15O2 secondary particle during lithium intercalation[J]. Advanced Energy Materials, 2023, 13(23): 2204328. DOI: 10.1002/aenm. 202204328. |
21 | NGANDJONG A C, LOMBARDO T, PRIMO E N, et al. Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: Towards a digital twin of Li-Ion battery manufacturing[J]. Journal of Power Sources, 2021, 485: 229320. DOI: 10.1016/j.jpowsour.2020.229320. |
22 | ZHANG H M, REN D S, MING H, et al. Digital twin enables rational design of ultrahigh-power lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(1): 2202660. DOI: 10.1002/aenm.202202660. |
23 | 辛耀达, 李娜, 杨乐, 等. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. DOI: 10.19799/j.cnki.2095-4239. 2022.0183. |
XIN Y D, LI N, YANG L, et al. Integrated sensing technology for lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. DOI: 10.19799/j.cnki.2095-4239. 2022.0183. | |
24 | TRANTER T G, TIMMS R, SHEARING P R, et al. Communication—Prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection[J]. Journal of the Electrochemical Society, 2020, 167(16): 160544. DOI: 10.1149/1945-7111/abd44f. |
25 | WANG X W, ZHU J G, WEI X Z, et al. Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing[J]. Energy Storage Materials, 2024, 65: 103160. DOI: 10.1016/j.ensm.2023.103160. |
26 | GERVILLIÉ-MOURAVIEFF C, ALBERO BLANQUER L, ALPHEN C, et al. Unraveling SEI formation and cycling behavior of commercial Ni-rich NMC Li-ion pouch cells through operando optical characterization[J]. Journal of Power Sources, 2023, 580: 233268. DOI: 10.1016/j.jpowsour.2023.233268. |
27 | HUANG J Q, DELACOURT C, DESAI P, et al. Unravelling thermal and enthalpy evolutions of commercial sodium-ion cells upon cycling ageing via fiber optic sensors[J]. Journal of the Electrochemical Society, 2023, 170(9): 090510. DOI: 10.1149/1945-7111/acf625. |
28 | WU Y T, LONG X L, LU J Y, et al. Long-life in situ temperature field monitoring using Fiber Bragg grating sensors in electromagnetic launch high-rate hardcase lithium-ion battery[J]. Journal of Energy Storage, 2023, 57: 106207. DOI: 10.1016/j.est.2022.106207. |
29 | MEI W X, LIU Z, WANG C D, et al. operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. DOI: 10.1038/s41467-023-40995-3. |
30 | LI P F, WEI Z B, WU K, et al. Embedded sensing-enabled distributed thermal modeling and nondestructive thermal monitoring of lithium-ion battery[J]. IEEE Transactions on Transportation Electrification, 2023, PP(99): 1. DOI: 10.1109/TTE.2023.3340036. |
31 | WEI Z B, LI P F, CAO W K, et al. Machine learning-based hybrid thermal modeling and diagnostic for lithium-ion battery enabled by embedded sensing[J]. Applied Thermal Engineering, 2022, 216: 119059. DOI: 10.1016/j.applthermaleng.2022.119059. |
32 | YU Y F, VINCENT T, SANSOM J, et al. Distributed internal thermal monitoring of lithium ion batteries with fibre sensors[J]. Journal of Energy Storage, 2022, 50: 104291. DOI: 10.1016/j.est.2022.104291. |
33 | YU Y F, VERGORI E, MADDAR F, et al. Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre[J]. Journal of Power Sources, 2022, 521: 230957. DOI: 10.1016/j.jpowsour. 2021. 230957. |
34 | HUANG J Q, ALBERO BLANQUER L, BONEFACINO J, et al. operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5: 674-683. DOI: 10.1038/s41560-020-0665-y. |
35 | LING X, ZHANG Q, XIANG Y, et al. A Cu/Ni alloy thin-film sensor integrated with current collector for in situ monitoring of lithium-ion battery internal temperature by high-throughput selecting method[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124383. DOI: 10.1016/j.ijheatmasstransfer.2023.124383. |
36 | ZHANG H Y, ZHANG X S, WANG W W, et al. Detection and prediction of the early thermal runaway and control of the Li-ion battery by the embedded temperature sensor array[J]. Sensors, 2023, 23(11): 5049. DOI: 10.3390/s23115049. |
37 | PENG X L, HAN J, ZHANG Q, et al. Real-time mechanical and thermal monitoring of lithium batteries with PVDF-TrFE thin films integrated within the battery[J]. Sensors and Actuators A: Physical, 2022, 338: 113484. DOI: 10.1016/j.sna.2022.113484. |
38 | ZHU S X, HAN J D, AN H Y, et al. A novel embedded method for in situ measuring internal multi-point temperatures of lithium ion batteries[J]. Journal of Power Sources, 2020, 456: 227981. DOI: 10.1016/j.jpowsour.2020.227981. |
39 | MUTYALA M S K, ZHAO J Z, LI J Y, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014, 260: 43-49. DOI: 10.1016/j.jpowsour.2014.03.004. |
40 | FORTIER A, TSAO M, WILLIARD N, et al. Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies, 2017, 10(7): 838. DOI: 10.3390/en10070838. |
41 | YANG L, LI N, HU L K, et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor[J]. Acta Mechanica Sinica, 2021, 37(6): 895-901. DOI: 10.1007/s10409-021-01103-0. |
42 | MENG D C, XUE Z C, CHEN G K, et al. Multiscale correlative imaging reveals sequential and heterogeneous degradations in fast-charging batteries[J]. Energy & Environmental Science, 2024, 17(13): 4658-4669. DOI: 10.1039/D4EE01497A. |
43 | WALDMANN T, GORSE S, SAMTLEBEN T, et al. A mechanical aging mechanism in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1742-A1747. DOI: 10.1149/2.1001410jes. |
44 | PFRANG A, KERSYS A, KRISTON A, et al. Geometrical inhomogeneities as cause of mechanical failure in commercial 18650Lithium ion cells[J]. Journal of the Electrochemical Society, 2019, 166(15): A3745-A3752. DOI: 10.1149/2.0551914jes. |
45 | WILLENBERG L, DECHENT P, FUCHS G, et al. The development of jelly roll deformation in 18650 lithium-ion batteries at low state of charge[J]. Journal of the Electrochemical Society, 2020, 167(12): 120502. DOI: 10.1149/1945-7111/aba96d. |
46 | PFRANG A, KERSYS A, SCURTU R G, et al. Deformation from formation until end of life: Micro X-ray computed tomography of silicon alloy containing 18650 Li-ion cells[J]. Journal of the Electrochemical Society, 2023, 170(3): 030548. DOI: 10.1149/1945-7111/acc6f3. |
47 | PENG J, JIA S H, YANG S M, et al. State estimation of lithium-ion batteries based on strain parameter monitored by fiber Bragg grating sensors[J]. Journal of Energy Storage, 2022, 52: 104950. DOI: 10.1016/j.est.2022.104950. |
48 | PENG J, ZHOU X, JIA S H, et al. High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors[J]. Journal of Power Sources, 2019, 433: 226692. DOI: 10.1016/j.jpowsour.2019.226692. |
49 | GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341: 474-482. DOI: 10.1016/j.jpowsour. 2016. 11.103. |
50 | CHEN S Q, WEI X Z, ZHANG G X, et al. Mechanical strain signal based early warning for failure of different prismatic lithium-ion batteries[J]. Journal of Power Sources, 2023, 580: 233397. DOI: 10.1016/j.jpowsour.2023.233397. |
51 | RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473. DOI: 10.1016/j.jpowsour.2016.11.104. |
52 | ZHANG Y, XIAO X P, CHEN W L, et al. In operando monitoring the stress evolution of silicon anode electrodes during battery operation via optical fiber sensors[J]. Small, 2024, 20(29): e2311299. DOI: 10.1002/smll.202311299. |
53 | ALBERO BLANQUER L, MARCHINI F, SEITZ J R, et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes[J]. Nature Communications, 2022, 13(1): 1153. DOI: 10.1038/s41467-022-28792-w. |
54 | MIAO Z Y, LI Y P, XIAO X P, et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(5): 2029-2038. DOI: 10.1039/D2EE00007E. |
55 | ZHU S X, YANG L, WEN J W, et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors[J]. Journal of Power Sources, 2021, 516: 230669. DOI: 10.1016/j.jpowsour.2021.230669. |
56 | ZHU S X, YANG L, FAN J B, et al. In-situ obtained internal strain and pressure of the cylindrical Li-ion battery cell with silicon-graphite negative electrodes[J]. Journal of Energy Storage, 2021, 42: 103049. DOI: 10.1016/j.est.2021.103049. |
57 | SCHMITT J, KRAFT B, SCHMIDT J P, et al. Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478: 228661. DOI: 10.1016/j.jpowsour.2020.228661. |
58 | HEMMERLING J, SCHÄFER J, JUNG T, et al. Investigation of internal gas pressure and internal temperature of cylindrical Li-ion cells to study thermodynamical and mechanical properties of hard case battery cells[J]. Journal of Energy Storage, 2023, 59: 106444. DOI: 10.1016/j.est.2022.106444. |
59 | TAN K, LI W, LIN Z, et al. operando monitoring of internal gas pressure in commercial lithium-ion batteries via a MEMS-assisted fiber-optic interferometer[J]. Journal of Power Sources, 2023, 580: 233471. DOI: 10.1016/j.jpowsour.2023.233471. |
60 | KOCH S, BIRKE K, KUHN R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): 16. DOI: 10.3390/batteries4020016. |
61 | LYU S Q, LI N, SUN L, et al. Rapid operando gas monitor for commercial lithium ion batteries: Gas evolution and relation with electrode materials[J]. Journal of Energy Chemistry, 2022, 72: 14-25. DOI: 10.1016/j.jechem.2022.04.010. |
62 | CAI T, VALECHA P, TRAN V, et al. Detection of Li-ion battery failure and venting with Carbon Dioxide sensors[J]. eTransportation, 2021, 7: 100100. DOI: 10.1016/j.etran.2020.100100. |
63 | ALLSOP T, NEAL R. A review: Application and implementation of optic fibre sensors for gas detection[J]. Sensors, 2021, 21(20): 6755. DOI: 10.3390/s21206755. |
64 | CHEN X R, GAN L, GUO X. Optical fiber-based gas sensing for early warning of thermal runaway in lithium-ion batteries[J]. Advanced Sensor Research, 2023, 2(12). DOI: 10.1002/adsr. 202300055. |
65 | FUJIMOTO S, UEMURA S, IMANISHI N, et al. Oxygen concentration measurement in the porous cathode of a lithium-air battery using a fine optical fiber sensor[J]. Mechanical Engineering Letters, 2019, 5: 19-95-19-00095. DOI: 10.1299/mel.19-00095. |
66 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. DOI: 10.1149/1.2221597. |
67 | FULLER T F, DOYLE M, NEWMAN J. Simulation and optimization of the dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1994, 141(1): 1-10. DOI: 10.1149/1.2054684. |
68 | ZHANG D, POPOV B N, WHITE R E. Modeling lithium intercalation of a single spinel particle under potentiodynamic control[J]. Journal of the Electrochemical Society, 2000, 147(3): 831. DOI: 10.1149/1.1393279. |
69 | GU W B, WANG C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of the Electrochemical Society, 2000, 147(8): 2910. DOI: 10.1149/1.1393625. |
70 | LI H H, SAINI A, LIU C Y, et al. Electrochemical and thermal characteristics of prismatic lithium-ion battery based on a three-dimensional electrochemical-thermal coupled model[J]. Journal of Energy Storage, 2021, 42: 102976. DOI: 10.1016/j.est. 2021.102976. |
71 | NIE P B, ZHANG S W, RAN A H, et al. Full-cycle electrochemical-thermal coupling analysis for commercial lithium-ion batteries[J]. Applied Thermal Engineering, 2021, 184: 116258. DOI: 10.1016/j.applthermaleng.2020.116258. |
72 | XU M, ZHANG Z Q, WANG X, et al. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317. DOI: 10.1016/j.energy.2014.11.073. |
73 | DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510. DOI: 10.1016/j.applthermaleng.2017.04.077. |
74 | GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587. DOI: 10.1016/j.electacta.2017.06.164. |
75 | LI C S, ZHANG H Y, ZHANG R J, et al. On the characteristics analysis and tab design of an 18650 type cylindrical LiFePO4 battery[J]. Applied Thermal Engineering, 2021, 182: 116144. DOI: 10.1016/j.applthermaleng.2020.116144. |
76 | LIN X W, ZHOU Z F, ZHU X G, et al. Non-uniform thermal characteristics investigation of three-dimensional electrochemical-thermal coupled model for pouch lithium-ion battery[J]. Journal of Cleaner Production, 2023, 417: 137912. DOI: 10.1016/j.jclepro. 2023.137912. |
77 | HUANG Y F, LAI X, REN D S, et al. Thermal and stoichiometry inhomogeneity investigation of large-format lithium-ion batteries via a three-dimensional electrochemical-thermal coupling model[J]. Electrochimica Acta, 2023, 468: 143212. DOI: 10.1016/j.electacta.2023.143212. |
78 | ÖZDEMIR T, EKICI Ö, KÖKSAL M. Numerical and experimental investigation of the electrical and thermal behaviors of the Li-ion batteries under normal and abuse operating conditions[J]. Journal of Energy Storage, 2024, 77: 109880. DOI: 10.1016/j.est.2023.109880. |
79 | AMIRI M N, HÅKANSSON A, BURHEIM O S, et al. Lithium-ion battery digitalization: Combining physics-based models and machine learning[J]. Renewable and Sustainable Energy Reviews, 2024, 200: 114577. DOI: 10.1016/j.rser.2024.114577. |
80 | 吴宜琨, 何杰, 杨乐, 等. 锂离子电池多物理场多尺度变形理论模型与计算方法[J]. 储能科学与技术, 2023, 12(7): 2141-2154. DOI: 10.19799/j.cnki.2095-4239.2023.0301. |
WU Y K, HE J, YANG L, et al. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2141-2154. DOI: 10.19799/j.cnki.2095-4239.2023.0301. | |
81 | SAUERTEIG D, HANSELMANN N, ARZBERGER A, et al. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 235-247. DOI: 10.1016/j.jpowsour.2017.12.044. |
82 | LEE Y K, SONG J, PARK J. Multi-scale coupled mechanical-electrochemical modeling for study on stress generation and its impact on multi-layered electrodes in lithium-ion batteries[J]. Electrochimica Acta, 2021, 389: 138682. DOI: 10.1016/j.electacta.2021.138682. |
83 | SHIN J, LEE Y K. Multi-scale mechanical-electrochemical coupled modeling of stress generation and its impact on different battery cell geometries[J]. Journal of Power Sources, 2024, 595: 234064. DOI: 10.1016/j.jpowsour.2024.234064. |
84 | GUO W D, LI Y Q, SUN Z C, et al. A digital twin to quantitatively understand aging mechanisms coupled effects of NMC battery using dynamic aging profiles[J]. Energy Storage Materials, 2023, 63: 102965. DOI: 10.1016/j.ensm.2023.102965. |
85 | YUAN C H, HAHN Y, LU W Q, et al. Quantification of electrochemical-mechanical coupling in lithium-ion batteries[J]. Cell Reports Physical Science, 2022, 3(12): 101158. DOI: 10.1016/j.xcrp.2022.101158. |
86 | WANG Y N, NI R K, JIANG X B, et al. An electrochemical-mechanical coupled multi-scale modeling method and full-field stress distribution of lithium-ion battery[J]. Applied Energy, 2023, 347: 121444. DOI: 10.1016/j.apenergy.2023.121444. |
87 | DUAN X T, JIANG W J, ZOU Y L, et al. A coupled electrochemical-thermal-mechanical model for spiral-wound Li-ion batteries[J]. Journal of Materials Science, 2018, 53(15): 10987-11001. DOI: 10.1007/s10853-018-2365-6. |
88 | ZHANG X X, CHUMAKOV S, LI X B, et al. An electro-chemo-thermo-mechanical coupled three-dimensional computational framework for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160542. DOI: 10.1149/1945-7111/abd1f2. |
89 | QIU Y T, ZHANG X X, USUBELLI C, et al. Understanding thermal and mechanical effects on lithium plating in lithium-ion batteries[J]. Journal of Power Sources, 2022, 541: 231632. DOI: 10.1016/j.jpowsour.2022.231632. |
90 | YANG S C, HUA Y, QIAO D, et al. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries[J]. Electrochimica Acta, 2019, 326: 134928. DOI: 10.1016/j.electacta.2019.134928. |
91 | LUO P F, LI P C, MA D Z, et al. A novel capacity fade model of lithium-ion cells considering the influence of stress[J]. Journal of the Electrochemical Society, 2021, 168(9): 090537. DOI: 10.1149/1945-7111/ac24b5. |
92 | LUO P F, LI P C, MA D Z, et al. Coupled electrochemical-thermal-mechanical modeling and simulation of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(10): 100535. DOI: 10.1149/1945-7111/ac9a04. |
93 | LI Y F, LI K, SHEN W J, et al. Stress-dependent capacity fade behavior and mechanism of lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111165. DOI: 10.1016/j.est. 2024.111165. |
94 | ZHAO K, LIU Y, MING W L, et al. Digital twin-driven estimation of state of charge for Li-ion battery[C]//2022 IEEE 7th International Energy Conference (ENERGYCON). May 9-12, 2022, Riga, Latvia. IEEE, 2022: 1-6. DOI: 10.1109/ENERGYCON53164. 2022.9830324. |
95 | EATY N D K M, BAGADE P. Electric vehicle battery management using digital twin[C]//2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). August 1-3, 2022, Barcelona, Spain. IEEE, 2022: 1-5. DOI: 10.1109/COINS54846. 2022.9854955. |
96 | LI H, HUANG J X, JI W J, et al. Predicting capacity fading behaviors of lithium ion batteries: An electrochemical protocol-integrated digital-twin solution[J]. Journal of the Electrochemical Society, 2022, 169(10): 100504. DOI: 10.1149/1945-7111/ac95d2. |
97 | QIN Y, ARUNAN A, YUEN C. Digital twin for real-time Li-ion battery state of health estimation with partially discharged cycling data[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7247-7257. DOI: 10.1109/TII.2022.3230698. |
98 | ALAMIN K S S, CHEN Y K, MACII E, et al. Digital twins for electric vehicle SoX battery modeling: Status and proposed advancements[C]//2023 AEIT International Conference on Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE). July 17-19, 2023. Modena, Italy. IEEE, 2023. DOI: 10.23919/aeitautomotive58986.2023.10217251. |
99 | YI Y H, XIA C Y, FENG C, et al. Digital twin-long short-term memory (LSTM) neural network based real-time temperature prediction and degradation model analysis for lithium-ion battery[J]. Journal of Energy Storage, 2023, 64: 107203. DOI: 10.1016/j.est.2023.107203. |
100 | EATY N D K M, BAGADE P. Digital twin for electric vehicle battery management with incremental learning[J]. Expert Systems with Applications, 2023, 229: 120444. DOI: 10.1016/j.eswa.2023.120444. |
101 | POOYANDEH M, SOHN I. Smart lithium-ion battery monitoring in electric vehicles: An AI-empowered digital twin approach[J]. Mathematics, 2023, 11(23): 4865. DOI: 10.3390/math11234865. |
102 | LI W, LI Y S, GARG A, et al. Enhancing real-time degradation prediction of lithium-ion battery: A digital twin framework with CNN-LSTM-attention model[J]. Energy, 2024, 286: 129681. DOI: 10.1016/j.energy.2023.129681. |
103 | NAIR P, VAKHARIA V, SHAH M, et al. AI-driven digital twin model for reliable lithium-ion battery discharge capacity predictions[J]. International Journal of Intelligent Systems, 2024, 2024: 8185044. DOI: 10.1155/2024/8185044. |
104 | NKECHINYERE NJOKU J, IFEANYI NWAKANMA C, KIM D S. Explainable data-driven digital twins for predicting battery states in electric vehicles[J]. IEEE Access, 2024, 12: 83480-83501. DOI: 10.1109/ACCESS.2024.3413075. |
105 | YANG D Z, CUI Y D, XIA Q, et al. A digital twin-driven life prediction method of lithium-ion batteries based on adaptive model evolution[J]. Materials, 2022, 15(9): 3331. DOI: 10.3390/ma15093331. |
106 | THELEN A, ZHANG X G, FINK O, et al. A comprehensive review of digital twin: Part 2: Roles of uncertainty quantification and optimization, a battery digital twin, and perspectives[J]. Structural and Multidisciplinary Optimization, 2022, 66(1): 1. DOI: 10.1007/s00158-022-03410-x. |
107 | LI H, KALEEM M B, CHIU I J, et al. An intelligent digital twin model for the battery management systems of electric vehicles[J]. International Journal of Green Energy, 2024, 21(3): 461-475. DOI: 10.1080/15435075.2023.2199330. |
108 | XIE J H, YANG R F, HUI S Y R, et al. Dual Digital Twin: Cloud-edge collaboration with Lyapunov-based incremental learning in EV batteries[J]. Applied Energy, 2024, 355: 122237. DOI: 10.1016/j.apenergy.2023.122237. |
109 | WANG F J, ZHAO Z B, ZHAI Z, et al. Explainability-driven model improvement for SOH estimation of lithium-ion battery[J]. Reliability Engineering & System Safety, 2023, 232: 109046. DOI: 10.1016/j.ress.2022.109046. |
110 | FENG F, TENG S L, LIU K L, et al. Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model[J]. Journal of Power Sources, 2020, 455: 227935. DOI: 10.1016/j.jpowsour.2020.227935. |
111 | DINEVA A, CSOMÓS B, KOCSIS SZ S, et al. Investigation of the performance of direct forecasting strategy using machine learning in State-of-Charge prediction of Li-ion batteries exposed to dynamic loads[J]. Journal of Energy Storage, 2021, 36: 102351. DOI: 10.1016/j.est.2021.102351. |
112 | TIAN J P, XIONG R, LU J H, et al. Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning[J]. Energy Storage Materials, 2022, 50: 718-729. DOI: 10.1016/j.ensm.2022.06.007. |
113 | SINGH S, EBONGUE Y E, REZAEI S, et al. Hybrid modeling of lithium-ion battery: Physics-informed neural network for battery state estimation[J]. Batteries, 2023, 9(6): 301. DOI: 10.3390/batteries9060301. |
114 | YU H Q, ZHANG L S, WANG W T, et al. State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries[J]. Energy, 2023, 278: 127846. DOI: 10.1016/j.energy.2023.127846. |
115 | NASCIMENTO R G, CORBETTA M, KULKARNI C S, et al. Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis[J]. Journal of Power Sources, 2021, 513: 230526. DOI: 10.1016/j.jpowsour.2021.230526. |
116 | KOHTZ S, XU Y W, ZHENG Z Y, et al. Physics-informed machine learning model for battery state of health prognostics using partial charging segments[J]. Mechanical Systems and Signal Processing, 2022, 172: 109002. DOI: 10.1016/j.ymssp.2022.109002. |
117 | SUN B, PAN J L, WU Z Y, et al. Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232432. DOI: 10.1016/j.jpowsour.2022.232432. |
118 | HOFMANN T, HAMAR J, ROGGE M, et al. Physics-informed neural networks for state of health estimation in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(9): 090524. DOI: 10.1149/1945-7111/acf0ef. |
119 | FU H J, LIU Z G, CUI K X, et al. Physics-informed neural network for spacecraft lithium-ion battery modeling and health diagnosis[J]. IEEE/ASME Transactions on Mechatronics, 2024, PP(99): 1-10. DOI: 10.1109/TMECH.2023.3348519. |
120 | WEN P F, YE Z S, LI Y, et al. Physics-informed neural networks for prognostics and health management of lithium-ion batteries[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 2276-2289. DOI: 10.1109/TIV.2023.3315548. |
121 | WANG F J, ZHAI Z, ZHAO Z B, et al. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis[J]. Nature Communications, 2024, 15(1): 4332. DOI: 10.1038/s41467-024-48779-z. |
122 | TANG A H, XU Y C, HU Y Z, et al. Battery state of health estimation under dynamic operations with physics-driven deep learning[J]. Applied Energy, 2024, 370: 123632. DOI: 10.1016/j.apenergy.2024.123632. |
123 | SHI J C, RIVERA A, WU D Z. Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction[J]. Mechanical Systems and Signal Processing, 2022, 179: 109347. DOI: 10.1016/j.ymssp.2022.109347. |
124 | NAJERA-FLORES D A, HU Z, CHADHA M, et al. A Physics-Constrained Bayesian neural network for battery remaining useful life prediction[J]. Applied Mathematical Modelling, 2023, 122: 42-59. DOI: 10.1016/j.apm.2023.05.038. |
125 | MA L, TIAN J P, ZHANG T L, et al. Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning[J]. Journal of Energy Chemistry, 2024, 91: 512-521. DOI: 10.1016/j.jechem.2023.12.043. |
126 | WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015. DOI: 10.1016/j.rser.2020.110015. |
127 | LIN Y H, RUAN S J, CHEN Y X, et al. Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113807. DOI: 10.1016/j.rser.2023.113807. |
128 | CUI B H, WANG H, LI R L, et al. Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model[J]. Applied Energy, 2024, 353: 122080. DOI: 10.1016/j.apenergy.2023.122080. |
129 | THELEN A, LUI Y H, SHEN S, et al. Integrating physics-based modeling and machine learning for degradation diagnostics of lithium-ion batteries[J]. Energy Storage Materials, 2022, 50: 668-695. DOI: 10.1016/j.ensm.2022.05.047. |
130 | NAVIDI S, THELEN A, LI T K, et al. Physics-informed machine learning for battery degradation diagnostics: A comparison of state-of-the-art methods[J]. Energy Storage Materials, 2024, 68: 103343. DOI: 10.1016/j.ensm.2024.103343. |
131 | SU A Y, MAO S Y, LU L G, et al. Implanted potential sensing separator enables smart battery internal state monitor and safety alert[J]. eTransportation, 2024, 21: 100339. DOI: 10.1016/j.etran.2024.100339. |
[1] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[2] | Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence [J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197. |
[3] | Ziyu LIU, Zekun JIANG, Wei QIU, Quan XU, Yingchun NIU, Chunming XU, Tianhang ZHOU. Application of artificial intelligence in long-duration redox flow batteries storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. |
[4] | Congxin LI, Meiling YUE, Xintong LI, Qinghui XIONG, Xiaoyan LIU. Proton exchange membrane fuel cell aging performance prediction based on conditional neural networks [J]. Energy Storage Science and Technology, 2024, 13(9): 3094-3102. |
[5] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[6] | Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model [J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058. |
[7] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[8] | Yajie LI, Yiping WANG, Bin CHEN, Hailong LIN, Geng ZHANG, Siqi SHI. Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate [J]. Energy Storage Science and Technology, 2024, 13(9): 2864-2870. |
[9] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[10] | Long FAN, Yan ZHANG. The whole process digital intelligent manufacturing technology in the energy battery manufacturing process [J]. Energy Storage Science and Technology, 2024, 13(4): 1356-1358. |
[11] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[12] | Yuhao ZHOU, Luoyun XÜ, Zhongping ZHANG, Lingchong LIU, Bin NAN, Haiqi ZHAO. Construction and simulation analysis of thermoelectric coupling model of lithium battery based on digital twin [J]. Energy Storage Science and Technology, 2023, 12(2): 536-543. |
[13] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[14] | Chenkun LI, Shuai WANG, Jun HUANG. Method for solving physical model of electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2022, 11(3): 912-920. |
[15] | Chong LI, Chenhui WANG, Gao WANG, Zonghu LU, Chengzhi MA. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation [J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||