Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 124-139.doi: 10.19799/j.cnki.2095-4239.2024.0733
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yan CHEN(), Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN(
)
Received:
2024-08-05
Revised:
2024-08-30
Online:
2025-01-28
Published:
2025-02-25
Contact:
Dazhu CHEN
E-mail:cy021240@163.com;dzchen@szu.edu.cn
CLC Number:
Yan CHEN, Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN. Advances in polymeric solid-solid phase change materials based on polyethylene glycol[J]. Energy Storage Science and Technology, 2025, 14(1): 124-139.
Fig. 8
(a) Schematic representation of PCPU/mCNTs phase change films, infrared thermal images of heated chips without and with phase change films[57]; (b) Schematic diagram of the preparation of PU-SA/EG composites, maximum surface temperatures of heated sheet cartridges using different packaging materials at different discharge currents[58]; (c) Schematic diagram of the preparation of PI-CF/DTPCM[29]"
Fig. 9
(a) Schematic diagram of SSPCM preparation process and photothermal conversion process[59]; (b) Schematic of the mechanism during the phase transition of PU/GO and UV-visible-near infrared absorption spectra of different samples[61]; (c) UV-NIR absorption spectra of different samples and UV-NIR absorption before and after 500 cycles[58]"
1 | LI M, MA Q G. Performance improvement of phase change materials encapsulated with graphene oxide for thermal storage[J]. Journal of Energy Storage, 2024, 80: 110315. DOI: 10.1016/j.est.2023.110315. |
2 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. DOI: 10.1016/j.rser.2007.10.005. |
3 | YANG Z P, MA Y Y, JIA S M, et al. 3D-printed flexible phase-change nonwoven fabrics toward multifunctional clothing[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 7283-7291. DOI: 10.1021/acsami.1c21778. |
4 | 周建华, 刘庚, 刘晨, 等. 聚氨酯固-固相变储能材料的制备及应用[J]. 印染, 2020, 46(12): 61-65. |
ZHOU J H, LIU G, LIU C, et al. Preparation and application of polyurethane solid-solid phase change energy storage material[J]. China Dyeing & Finishing, 2020, 46(12): 61-65. | |
5 | CHEN M Y, CUI Y L, OUYANG D X, et al. Experimental study on the hybrid carbon based phase change materials for thermal management performance of lithium-ion battery module[J]. International Journal of Energy Research, 2022, 46(12): 17247-17261. DOI: 10.1002/er.8388. |
6 | FREEMAN T B, FOSTER K E O, TROXLER C J, et al. Advanced materials and additive manufacturing for phase change thermal energy storage and management: A review[J]. Advanced Energy Materials, 2023, 13(24): 2204208. DOI: 10.1002/aenm.202204208. |
7 | REDDY V J, GHAZALI M F, KUMARASAMY S. Advancements in phase change materials for energy-efficient building construction: A comprehensive review[J]. Journal of Energy Storage, 2024, 81: 110494. DOI: 10.1016/j.est.2024.110494. |
8 | 折晓会, 王星宇, 郭晓龙, 等. 超低温-高温跨温区相变材料制备及物性调控综述[J]. 储能科学与技术, 2023, 12(12): 3818-3835. DOI: 10.19799/j.cnki.2095-4239.2023.0726. |
SHE X H, WANG X Y, GUO X L, et al. A review on the preparation of ultra-low-temperature, high-temperature, and cross-temperature zone phase change materials and the regulation of physical properties[J]. Energy Storage Science and Technology, 2023, 12(12): 3818-3835. DOI: 10.19799/j.cnki.2095-4239.2023.0726. | |
9 | SU W G, DARKWA J, KOKOGIANNAKIS G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391. DOI: 10.1016/j.rser.2015.04.044. |
10 | SARı A, BIÇER A, ALKAN C. Thermal energy storage properties of polyethylene glycol grafted styrenic copolymer as novel solid-solid phase change materials[J]. International Journal of Energy Research, 2020, 44(5): 3976-3989. DOI: 10.1002/er.5208. |
11 | LEE J J C, SUGIARTO S, ONG P J, et al. Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application[J]. Journal of Energy Storage, 2022, 56: 106118. DOI: 10.1016/j.est.2022.106118. |
12 | XIAO C R, ZHANG G Q, LI Z H, et al. Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management[J]. Journal of Materials Chemistry A, 2020, 8(29): 14624-14633. DOI: 10.1039/D0TA05247G. |
13 | LEE W, LEE J, YANG W, et al. Fabrication of biobased advanced phase change material and multifunctional composites for efficient thermal management[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(3): 1178-1189. DOI: 10.1021/acssuschemeng. 2c06598. |
14 | XIAO Q Q, XU Y, LI X Q, et al. Enhanced solar-thermal and electro-thermal storage performance of solid-solid composite phase change material[J]. Composites Communications, 2024, 45: 101818. DOI: 10.1016/j.coco.2024.101818. |
15 | ZHANG N, YUAN Y P, CAO X L, et al. Latent heat thermal energy storage systems with solid-liquid phase change materials: A review[J]. Advanced Engineering Materials, 2018, 20(6): DOI: 10.1002/adem.201700753. |
16 | KOU Y, WANG S Y, LUO J P, et al. Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications[J]. The Journal of Chemical Thermodynamics, 2019, 128: 259-274. DOI: 10.1016/j.jct.2018.08.031. |
17 | ALVA G, LIN Y X, FANG G Y. Synthesis and characterization of chain-extended and branched polyurethane copolymers as form stable phase change materials for solar thermal conversion storage[J]. Solar Energy Materials and Solar Cells, 2018, 186: 14-28. DOI: 10.1016/j.solmat.2018.06.023. |
18 | 张雪丽, 孙伟清, 郑君华. 聚氨酯型固-固相变储能材料对沥青调温效果的影响研究[J]. 储能科学与技术, 2024, 13(3): 841-843. DOI: 10.19799/j.cnki.2095-4239.2024.0125. |
ZHANG X L, SUN W Q, ZHENG J H. Study on the influence of polyurethane-type solid-solid phase change energy storage materials on the temperature control effect of asphalt[J]. Energy Storage Science and Technology, 2024, 13(3): 841-843. DOI: 10.19799/j.cnki.2095-4239.2024.0125. | |
19 | CUI M L, TIAN C, YANG Y Y, et al. Intrinsic photothermal phase change materials with enhanced toughness and flexibility for thermal management in extreme environments[J]. Chemical Engineering Journal, 2023, 475: 146091. DOI: 10.1016/j.cej.2023.146091. |
20 | TIAN C, NING J Y, YANG Y Y, et al. Super tough and stable solid-solid phase change material based on π-π stacking[J]. Chemical Engineering Journal, 2022, 429: 132447. DOI: 10.1016/j.cej.2021.132447. |
21 | YUAN Y, WU B, JIANG L, et al. Nonconstant enthalpy of thermosetting solid-solid phase change materials controlled by light[J]. Energy and Buildings, 2020, 214: 109894. DOI: 10.1016/j.enbuild.2020.109894. |
22 | SOO X Y D, MUIRURI J K, YEO J C C, et al. Polyethylene glycol/polylactic acid block co-polymers as solid-solid phase change materials[J]. SmartMat, 2023, 4(3): e1188. DOI: 10.1002/smm2.1188. |
23 | OKTAY B, KAYAMAN-APOHAN N. Biodegradable polyurethane solid-solid phase change materials[J]. ChemistrySelect, 2021, 6(24): 6280-6285. DOI: 10.1002/slct.202100590. |
24 | YAN D G, FENG B B, ZHAO S L, et al. Robust phase change materials based on PBAT-block-PEG multiblock copolymers with novel thermostability prepared via facile melt transesterification[J]. Journal of Energy Storage, 2024, 84: 110895. DOI: 10.1016/j.est.2024.110895. |
25 | GÖK Ö, ALKAN C, KONUKLU Y. Developing a poly(ethylene glycol)/cellulose phase change reactive composite for cooling application[J]. Solar Energy Materials and Solar Cells, 2019, 191: 345-349. DOI: 10.1016/j.solmat.2018.11.038. |
26 | YAN D G, ZHAO S L, GE C, et al. PBT/adipic acid modified PEG solid-solid phase change composites[J]. Journal of Energy Storage, 2022, 52: 104753. DOI: 10.1016/j.est.2022.104753. |
27 | WU Y H, CHEN M S, ZHAO G Z, et al. Recyclable solid-solid phase change materials with superior latent heat via reversible anhydride-alcohol crosslinking for efficient thermal storage[J]. Advanced Materials, 2024, 36(16): e2311717. DOI: 10.1002/adma.202311717. |
28 | LIAO Y N, LI J, LI S W, et al. Super-elastic and shape-stable solid-solid phase change materials for thermal management of electronics[J]. Journal of Energy Storage, 2022, 52: 104751. DOI: 10.1016/j.est.2022.104751. |
29 | ZHU G Y, ZOU M M, LUO W X, et al. A polyurethane solid–solid phase change material for flexible use in thermal management[J]. Chemical Engineering Journal, 2024, 488: 150930. DOI: 10.1016/j.cej.2024.150930. |
30 | ZHAO P P, LU P, ZHAO Z Y, et al. Aromatic schiff base-based polymeric phase change materials for safe, leak-free, and efficient thermal energy management[J]. Chemical Engineering Journal, 2022, 437: 135461. DOI: 10.1016/j.cej.2022.135461. |
31 | HARLÉ T, NGUYEN G T M, LEDESERT B, et al. Cross-linked polyurethane as solid-solid phase change material for low temperature thermal energy storage[J]. Thermochimica Acta, 2020, 685: 178191. DOI: 10.1016/j.tca.2019.01.007. |
32 | HUANG L, YANG Y Y, YUAN D D, et al. Solid-solid phase-change materials with excellent mechanical property and solid state plasticity based on dynamic urethane bonds for Thermal Energy Storage[J]. Journal of Energy Storage, 2021, 36: 102343. DOI: 10.1016/j.est.2021.102343. |
33 | XU Z P, CHEN W H, WU T T, et al. Thermal management system study of flame retardant solid-solid phase change material battery[J]. Surfaces and Interfaces, 2023, 36: 102558. DOI: 10.1016/j.surfin.2022.102558. |
34 | DU X S, ZHOU M, DENG S, et al. Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency[J]. Cellulose, 2020, 27(8): 4679-4690. DOI: 10.1007/s10570-020-03110-z. |
35 | WANG F, ZHANG P, MOU Y R, et al. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage[J]. Polymer Testing, 2017, 63: 494-504. DOI: 10.1016/j.polymertesting. 2017.09.005. |
36 | CHENG M, QIN J W, YU H Y, et al. Solvent-free synthesis of cellulose nanocrystal-graft-poly (ethylene glycol) as solid-solid phase change nanoparticles[J]. Cellulose, 2022, 29(15): 8165-8176. DOI: 10.1007/s10570-022-04782-5. |
37 | DU X S, WANG H B, WU Y, et al. Solid-solid phase-change materials based on hyperbranched polyurethane for thermal energy storage[J]. Journal of Applied Polymer Science, 2017, 134(26): e45014. DOI: 10.1002/app.45014. |
38 | LEE J H, KIM S H. Synthesis and characterization of biopolyurethane crosslinked with castor oil-based hyperbranched polyols as polymeric solid-solid phase change materials[J]. Scientific Reports, 2022, 12(1): 14646. DOI: 10.1038/s41598-022-17390-x. |
39 | ZHOU J H, LIU G, NIU Z L, et al. Hyperbranched waterborne polyurethane solid-solid phase change material for thermal energy storage in thermal management fabric[J]. Fibers and Polymers, 2023, 24(2): 413-422. DOI: 10.1007/s12221-023-00081-3. |
40 | XIA Y P, ZHANG H Z, HUANG P R, et al. Graphene-oxide-induced lamellar structures used to fabricate novel composite solid-solid phase change materials for thermal energy storage[J]. Chemical Engineering Journal, 2019, 362: 909-920. DOI: 10.1016/j.cej.2019.01.097. |
41 | WU T T, WANG C H, HU Y X, et al. Flexible solid-solid phase change materials with high stability for thermal management[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124202. DOI: 10.1016/j.ijheatmasstransfer.2023.124202. |
42 | WANG K, LIU C, XIE W X, et al. Effects of ammonium polyphosphate and organic modified montmorillonite on flame retardancy of polyethylene glycol/wood-flour-based phase change composites[J]. Molecules, 2023, 28(8): 3464. DOI: 10.3390/molecules28083464. |
43 | XU H L, JIANG L, YUAN A Q, et al. Thermally-stable, solid-solid phase change materials based on dynamic metal-ligand coordination for efficient thermal energy storage[J]. Chemical Engineering Journal, 2021, 421: 129833. DOI: 10.1016/j.cej. 2021.129833. |
44 | LIU Z L, TANG B T, ZHANG S F. Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy[J]. Solar Energy Materials and Solar Cells, 2020, 216: 110678. DOI: 10.1016/j.solmat. 2020.110678. |
45 | DENG J, LI X X, LI C B, et al. Multifunctional flexible composite phase change material with high anti-leakage and thermal conductivity performances for battery thermal management[J]. Journal of Energy Storage, 2023, 72: 108313. DOI: 10.1016/j.est.2023.108313. |
46 | ZHOU J D, FANG M, YANG K, et al. A novel MOF/RGO-based composite phase change material for battery thermal management[J]. Applied Thermal Engineering, 2023, 227: 120383. DOI: 10.1016/j.applthermaleng.2023.120383. |
47 | LIN X D, SHAO D, JIANG L Q, et al. Low-temperature preparation of solid-solid phase change polymer for thermal management modules[J]. Chemical Engineering Science, 2021, 246: 116985. DOI: 10.1016/j.ces.2021.116985. |
48 | LI Z C, ZHANG Y A, WANG X, et al. Thermally-induced flexible composite phase change material with enhanced thermal conductivity[J]. Journal of Power Sources, 2024, 603: 234447. DOI: 10.1016/j.jpowsour.2024.234447. |
49 | ZENG X X, YE L S, WANG C H, et al. Highly stable solid-solid phase change materials for battery thermal management systems[J]. Journal of Energy Storage, 2024, 88: 111495. DOI: 10.1016/j.est.2024.111495. |
50 | DU X S, JIN L Z, DENG S, et al. Recyclable, self-healing, and flame-retardant solid-solid phase change materials based on thermally reversible cross-links for sustainable thermal energy storage[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42991-43001. DOI: 10.1021/acsami.1c14862. |
51 | BAI S J, ZHANG K X, ZHANG Q, et al. Intrinsic flame retardancy and flexible solid-solid phase change materials with self-healing and recyclability[J]. ACS Applied Materials & Interfaces, 2023, 15(41): 48613-48622. DOI: 10.1021/acsami.3c09722. |
52 | NI X P, WU L J. Preparation and performance study of a novel flame retardant polyurethane phase change materials[J]. Journal of Polymers and the Environment, 2024, 32(3): 1314-1325. DOI: 10.1007/s10924-023-03047-x. |
53 | WU B, WANG Y, LIU Z M, et al. Thermally reliable, recyclable and malleable solid-solid phase-change materials through the classical Diels-Alder reaction for sustainable thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(38): 21802-21811. DOI: 10.1039/C9TA08368E. |
54 | MEVAWALLA A, PANCHAL S, TRAN M K, et al. One dimensional fast computational partial differential model for heat transfer in lithium-ion batteries[J]. Journal of Energy Storage, 2021, 37: 102471. DOI: 10.1016/j.est.2021.102471. |
55 | MURALI G, SRAVYA G S N, JAYA J, et al. A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111513. DOI: 10.1016/j.rser. 2021.111513. |
56 | LI Y M, WANG T Y, LI X X, et al. Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module[J]. Applied Energy, 2022, 327: 120109. DOI: 10.1016/j.apenergy.2022.120109. |
57 | ZHANG Y A, WU P, MENG Y, et al. Flexible phase change films with enhanced thermal conductivity and low electrical conductivity for thermal management[J]. Chemical Engineering Journal, 2023, 464: 142650. DOI: 10.1016/j.cej.2023.142650. |
58 | LV S S, LIU X L, WANG J G, et al. Flexible highly thermally conductive biphasic composite films for multifunctional solar/electro-thermal conversion energy storage and thermal management[J]. Journal of Cleaner Production, 2023, 426: 139004. DOI: 10.1016/j.jclepro.2023.139004. |
59 | FANG Y, LI Z L, LI X L, et al. A novel covalent polymerized phase change composite with integrated shape memory, self-healing, electromagnetic shielding and multi-drive thermal management functions[J]. Chemical Engineering Journal, 2023, 459: 141600. DOI: 10.1016/j.cej.2023.141600. |
60 | GAO S Y, DING J, WANG W L, et al. MXene based flexible composite phase change material with shape memory, self-healing and flame retardant for thermal management[J]. Composites Science and Technology, 2023, 234: 109945. DOI: 10.1016/j.compscitech.2023.109945. |
61 | WANG J W, WU Z H, XIE H Q, et al. Graphene oxide/polyurethane-based composite solid-solid phase change materials with enhanced energy storage capacity and photothermal performance[J]. International Journal of Energy Research, 2022, 46(15): 22744-22756. DOI: 10.1002/er.8576. |
62 | PAKDEL E, NAEBE M, SUN L, et al. Advanced functional fibrous materials for enhanced thermoregulating performance[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13039-13057. DOI: 10.1021/acsami.8b19067. |
63 | DONG J K, SHI W Z, LIU J S, et al. Flexibility and thermal storage properties of polyurethane adhesive supported phase change composites based on polyurethane phase change materials[J]. Fibers and Polymers, 2023, 24(9): 3061-3074. DOI: 10.1007/s12221-023-00300-x. |
64 | LIANG C B, ZHANG W, LIU C L, et al. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics[J]. Chemical Engineering Journal, 2023, 471: 144500. DOI: 10.1016/j.cej. 2023.144500. |
[1] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
[2] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
[3] | Xueli ZHANG, Weiqing SUN, Junhua ZHENG. Study on the influence of polyurethane-type solid-solid phase change energy storage materials on the temperature control effect of asphalt [J]. Energy Storage Science and Technology, 2024, 13(3): 841-843. |
[4] | Peng NI, Shihao CAO. Melting heat storage properties of metal honeycomb/paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2024, 13(2): 425-435. |
[5] | Jianlong DAI, Guo LI, Yitong CAO, Zihan YANG, Zhiyuan XIA, Gongshuo ZHANG, Rui CHEN, Nan SHENG, Chunyu ZHU. Enhancing phase change heat storage performance of paraffin using porous metal foam [J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. |
[6] | Fei HAO, Junming WANG, Chunwei DONG, Linlin WEI, Yang DONG, Zhijiang SU, Wenbing LIANG. Preparation and research of three-dimensional silicon carbon anodes with a hollow structure [J]. Energy Storage Science and Technology, 2024, 13(1): 325-332. |
[7] | Jiangtian ZHU, Yuan ZHANG, Yibin LUO, Huiting YANG, Jie LI, Xiaoqin SUN. Optimization of 5G communication base station cabinet based on heat storage of phase change material [J]. Energy Storage Science and Technology, 2023, 12(9): 2789-2798. |
[8] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[9] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[10] | Hongbing CHEN, Xuening GAO, Tao LIU, Congcong WANG, Rui ZHAO, Junhui SUN, Chuanling WANG, Di HE. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material [J]. Energy Storage Science and Technology, 2023, 12(3): 661-668. |
[11] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[12] | Zhaofeng DAI, Zhu JIANG, Dongliang ZHAO, Zhiyuan ZHANG, Xiaosong ZHANG. Development and system application of phase change material for cold storage of fruits and vegetables [J]. Energy Storage Science and Technology, 2023, 12(12): 3720-3729. |
[13] | Hongbing CHEN, Chunyang LI, Congcong WANG, Men LI, Haoyang LU, Yuhang LIU, Yan ZHANG. Preparation and properties of binary composite phase-change materials based on solar low-temperature heat storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3663-3669. |
[14] | Tan SHUI, Yuting WU, Chuan LI, Qi LI. Preparation and properties of ternary nitrate-@silica microencapsulated phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3595-3604. |
[15] | Yunhan LIU, Liang WANG, Shuang ZHANG, Xipeng LIN, Zhiwei GE, Yakai BAI, Lin LIN, Haisheng CHEN. Thermal properties and thermal cycling stability of hydrated salt/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3627-3634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||