Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 104-123.doi: 10.19799/j.cnki.2095-4239.2024.0579
• Energy Storage Materials and Devices • Previous Articles Next Articles
Wenjing ZHANG(), Wei XIAO, Yahui YI, Liqin QIAN(
)
Received:
2024-06-27
Revised:
2024-08-12
Online:
2025-01-28
Published:
2025-02-25
Contact:
Liqin QIAN
E-mail:zwenjing202206@163.com;lqqian@tongji.edu.cn
CLC Number:
Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 104-123.
Fig.11
Separator improvement strategies (a)Separator with SiO2 nanoparticle interlayers, which can prevent the growth of lithium dendrites and prolong battery life[112]; (b) Separator coated with antimony trioxide and the flame retardant decabromodiphenyl ether, which greatly improves flame retardancy[113]; (c) Separator coated with silica microcapsules encapsulated with phase change materials and flame retardants, which are flame retardant and do not affect the rate performance[114]; (d) A bifunctional separator for early detection of lithium dendrites, consisting of two separators and a conductive Cu layer in the middle[116]"
1 | GOODENOUGH J B, KIM Y. ChemInform abstract: Challenges for rechargeable Li batteries[J]. ChemInform, 2010, 41(31). DOI: 10.1002/chin.201031217. |
2 | ZAGHIB K, DONTIGNY M, GUERFI A, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications[J]. Journal of Power Sources, 2011, 196(8): 3949-3954. DOI: 10. 1016/j. jpowsour. 2010. 11. 093. |
3 | YOO H D, MARKEVICH E, SALITRA G, et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion[J]. Materials Today, 2014, 17(3): 110-121. DOI: 10.1016/j.mattod.2014.02.014. |
4 | LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2011, 89(6): 434-442. DOI: 10.1016/j.psep.2011.06.022. |
5 | ARORA S, SHEN W X, KAPOOR A. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1319-1331. DOI: 10.1016/j.rser.2016.03.013. |
6 | SHIAU C S N, SAMARAS C, HAUFFE R, et al. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles[J]. Energy Policy, 2009, 37(7): 2653-2663. DOI: 10.1016/j.enpol.2009.02.040. |
7 | GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries [J]. Advanced Materials, 2018, 30(17): 1705702. DOI: 10.1002/adma.20 1705702. |
8 | RIEGER B, SCHLUETER S, ERHARD S V, et al. Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery[J]. Journal of Energy Storage, 2016, 6: 213-221. DOI: 10.1016/j.est.2016.01.006. |
9 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 16013. DOI: 10.1038/natrevmats.2016.13. |
10 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22. DOI: 10.1038/nmat4834. |
11 | SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 16071. DOI: 10.1038/nenergy.2016.71. |
12 | YANG Y, ZHENG G Y, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032. DOI: 10. 1039/c2cs35256g. |
13 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. DOI: 10.1016/j.jpowsour. 2012.10.060. |
14 | WANG M, YAO W T, ZOU P C, et al. Battery-on-Separator: A platform technology for arbitrary-shaped lithium ion batteries for high energy density storage[J]. Journal of Power Sources, 2021, 490: 229527. DOI: 10.1016/j.jpowsour.2021.229527. |
15 | LIU X X, CHAO D L, SU D P, et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage[J]. Nano Energy, 2017, 37: 108-117. DOI: 10.1016/j.nanoen.2017.04.051. |
16 | 韩啸, 张成锟, 吴华龙, 等. 锂离子电池的工作原理与关键材料[J]. 金属功能材料, 2021, 28(2): 37-58. DOI: 10.13228/j.boyuan.issn1005-8192.20210001. |
HAN X, ZHANG C K, WU H L, et al. Working mechanism and key materials of the lithium ion batteries[J]. Metallic Functional Materials, 2021, 28(2): 37-58. DOI: 10.13228/j.boyuan.issn1005-8192.20210001. | |
17 | 孙淑婷. 锂离子电池三元正极材料LiNi0.6Co0.2Mn0.2O2的制备与改性[D]. 天津: 天津大学, 2015. |
SUN S T. Preparation and modification of ternary cathode material LiNi0.6Co0.2Mn0.2O2 for lithium ion batteries[D]. Tianjin: Tianjin University, 2015. | |
18 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. DOI: 10.1038/nmat3435. |
19 | LI J, ZHANG Z R, GUO X J, et al. The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0<x≤1) as a cathode material in lithium ion batteries[J]. Solid State Ionics, 2006, 177(17/18): 1509-1516. DOI: 10.1016/j.ssi.2006.03.055. |
20 | YU W Q, LI C C, LI Y Y, et al. Research progress on lithium-rich cathode materials for high energy density lithium-ion batteries[J]. Journal of Alloys and Compounds, 2024, 986: 174156. DOI: 10.1016/j.jallcom.2024.174156. |
21 | LU K J, ZHAO C S, JIANG Y F. Research progress of cathode materials for lithium-ion batteries[J]. E3S Web of Conferences, 2021, 233: 01020. DOI: 10.1051/e3sconf/202123301020. |
22 | BALAKRISHNAN P G, RAMESH R, PREM KUMAR T. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. DOI: 10.1016/j.jpowsour.2005.12.002. |
23 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. DOI: 10.1166/mex. 2012.1075. |
24 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. DOI: 10.1016/j.jpowsour. 2012. 02.038. |
25 | DOUGHTY H D, ROTH P E. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012: 37. DOI: 10.1149/2.f03122if. |
26 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. DOI: 10. 1126/sciadv.aas9820. |
27 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. DOI: 10.1016/j.jpowsour.2014.01.005. |
28 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. DOI: 10.1016/j.apenergy.2015.04.118. |
29 | WANG Q S, HUANG P F, PING P, et al. Combustion behavior of lithium iron phosphate battery induced by external heat radiation[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 961-969. DOI: 10.1016/j.jlp.2016.12.002. |
30 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009. |
31 | FENG X N, ZHENG S Q, REN D S, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158: 4684-4689. DOI: 10.1016/j.egypro.2019.01.736. |
32 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10.1016/j.joule.2020.02.010. |
33 | FENG X N, ZHENG S Q, HE X M, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode[J]. Frontiers in Energy Research, 2018, 6: 126. DOI: 10.3389/fenrg.2018.00126. |
34 | LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231. DOI: 10.1016/j.jpowsour.2017.10.085. |
35 | KALHOFF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175. DOI: 10.1002/cssc.201500284. |
36 | KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719. DOI: 10.1016/S0378-7753(98)00234-1. |
37 | FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467. DOI: 10.1016/j.jpowsour.2014.08.094. |
38 | YU S Y, MAO Y, XIE J Y, et al. Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature[J]. Applied Energy, 2024, 353: 122097. DOI: 10.1016/j.apenergy. 2023. 122097. |
39 | ARORA P, ZHANG Z J. Battery separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462. DOI: 10.1021/cr020738u. |
40 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
41 | LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. DOI: 10.1016/j.joule.2018.06.015. |
42 | BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351. DOI: 10.1021/cm303096e. |
43 | BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601. DOI: 10.1021/am506712c. |
44 | LI Y, LIU X, WANG L, et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials[J]. Nano Energy, 2021, 85: 105878. DOI: 10.1016/j.nanoen. 2021. 105878. |
45 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. DOI: 10.1016/j.ensm.2020.10.020. |
46 | LI Y, SONG J, YANG J. A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 627-633. DOI: 10.1016/j.rser.2014.05.059. |
47 | SHARIFI-ASL S, LU J, AMINE K, et al. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches[J]. Advanced Energy Materials, 2019, 9(22): 1900551. DOI: 10.1002/aenm.201900551. |
48 | CHEN S Y, GAO Z H, SUN T J. Safety challenges and safety measures of Li-ion batteries[J]. Energy Science & Engineering, 2021, 9(9): 1647-1672. DOI: 10.1002/ese3.895. |
49 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301. DOI: 10. 1021/cr020731c. |
50 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. DOI: 10.1038/nmat2418. |
51 | VIDU R, STROEVE P. Improvement of the thermal stability of Li-ion batteries by polymer coating of LiMn2O4[J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3314-3324. DOI: 10.1021/ie034085z. |
52 | TAKAMI N, OHSAKI T, HASEBE H, et al. Laminated thin Li-ion batteries using a liquid electrolyte[J]. Journal of the Electrochemical Society, 2002, 149(1): A9. DOI: 10.1149/1. 1420704. |
53 | XIA L, LI S L, AI X P, et al. Temperature-sensitive cathode materials for safer lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2845-2848. DOI: 10.1039/C0EE00590H. |
54 | NAGUIB M, ALLU S, SIMUNOVIC S, et al. Limiting internal short-circuit damage by electrode partition for impact-tolerant Li-ion batteries[J]. Joule, 2018, 2(1): 155-167. DOI: 10.1016/j.joule. 2017. 11.003. |
55 | DING F, XU W, CHOI D, et al. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(25): 12745-12751. DOI: 10.1039/C2JM31015E. |
56 | LEE M L, LI Y H, LIAO S C, et al. Li4Ti5O12-coated graphite as an anode material for lithium-ion batteries[J]. Applied Surface Science, 2012, 258(16): 5938-5942. DOI: 10.1016/j.apsusc. 2011.11.018. |
57 | EOM J Y, CHO Y H, KIM S I, et al. Improvements in the electrochemical performance of Li4Ti5O12-coated graphite anode materials for lithium-ion batteries by simple ball-milling[J]. Journal of Alloys and Compounds, 2017, 723: 456-461. DOI: 10.1016/j.jallcom.2017.06.210. |
58 | ZHANG H Y, CHEN Y T, LI J, et al. Li4Ti5O12/CNTs composite anode material for large capacity and high-rate lithium ion batteries[J]. International Journal of Hydrogen Energy, 2014, 39(28): 16096-16102. DOI: 10.1016/j.ijhydene.2014.01.139. |
59 | REN B, LI W, WEI A J, et al. Boron and nitrogen co-doped CNT/Li4Ti5O12 composite for the improved high-rate electrochemical performance of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 740: 784-789. DOI: 10.1016/j.jallcom. 2017.12.167. |
60 | NOBILI F, DSOKE S, MECOZZI T, et al. Metal-oxidized graphite composite electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2005, 51(3): 536-544. DOI: 10.1016/j.electacta. 2005. 05.012. |
61 | ZHANG W H. Calculation model of edge carbon atoms in graphite particles for anode of lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2466-2475. DOI: 10.1016/S1003-6326(11)61038-8. |
62 | ZHANG H L, LIU S H, LI F, et al. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres[J]. Carbon, 2006, 44(11): 2212-2218. DOI: 10.1016/j.carbon.2006.02.037. |
63 | PARK J S, LEE M H, JEON I Y, et al. Edge-exfoliated graphites for facile kinetics of delithiation[J]. ACS Nano, 2012, 6(12): 10770-10775. DOI: 10.1021/nn3050227. |
64 | LIN Y X, HUANG Z H, YU X L, et al. Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid[J]. Electrochimica Acta, 2014, 116: 170-174. DOI: 10.1016/j.electacta.2013.11.057. |
65 | KIM T H, JEON E K, KO Y, et al. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast[J]. Journal of Materials Chemistry A, 2014, 2(20): 7600-7605. DOI: 10.1039/C3TA15360F. |
66 | GALLEGO N C, CONTESCU C I, MEYER H M, et al. Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries[J]. Carbon, 2014, 72: 393-401. DOI: 10.1016/j.carbon.2014.02.031. |
67 | BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Editon, 2008, 47(16): 2930-2946. DOI: 10.1002/anie.200702505. |
68 | CHOUDHURY R, WILD J, YANG Y. Engineering current collectors for batteries with high specific energy[J]. Joule, 2021, 5(6): 1301-1305. DOI: 10.1016/j.joule.2021.03.027. |
69 | MALEKI H, AL HALLAJ S, SELMAN J R, et al. Thermal properties of lithium-ion battery and components[J]. Journal of the Electrochemical Society, 1999, 146(3): 947-954. DOI: 10. 1149/1.1391704. |
70 | JEONG H, JANG J, JO C. A review on current collector coating methods for next-generation batteries[J]. Chemical Engineering Journal, 2022, 446: 136860. DOI: 10.1016/j.cej.2022.136860. |
71 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. DOI: 10.1016/j.jpowsour.2020.229321. |
72 | YAZICI M S, KRASSOWSKI D, PRAKASH J. Flexible graphite as battery anode and current collector[J]. Journal of Power Sources, 2005, 141(1): 171-176. DOI: 10.1016/j.jpowsour.2004.09.009. |
73 | WANG L, HE X M, LI J J, et al. Graphene-coated plastic film as current collector for lithium/sulfur batteries[J]. Journal of Power Sources, 2013, 239: 623-627. DOI: 10.1016/j.jpowsour. 2013. 02.008. |
74 | ZHANG Z G, SONG Y Z, ZHANG B, et al. Metallized plastic foils: A promising solution for high-energy lithium-ion battery current collectors[J]. Advanced Energy Materials, 2023, 13(36): 2302134. DOI: 10.1002/aenm.202302134. |
75 | YUN J H, HAN G B, LEE Y M, et al. Low resistance flexible current collector for lithium secondary battery[J]. Electrochemical and Solid-State Letters, 2011, 14(8): A116-A119. DOI: 10.1149/1.3596721. |
76 | JUNG M S, SEO J H, MOON M W, et al. A bendable Li-ion battery with a nano-hairy electrode: Direct integration scheme on the polymer substrate[J]. Advanced Energy Materials, 2015, 5(1): 1400611. DOI: 10.1002/aenm.201400611. |
77 | YE Y S, CHOU L Y, LIU Y Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries[J]. Nature Energy, 2020, 5: 786-793. DOI: 10.1038/s41560-020-00702-8. |
78 | PHAM M T M, DARST J J, WALKER W Q, et al. Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors[J]. Cell Reports Physical Science, 2021, 2(3): 100360. DOI: 10.1016/j.xcrp.2021.100360. |
79 | LIU Z K, DONG Y H, QI X Q, et al. Stretchable separator/current collector composite for superior battery safety[J]. Energy & Environmental Science, 2022, 15(12): 5313-5323. DOI: 10.1039/D2EE01793H. |
80 | 汪茹, 刘志康, 严超, 等. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 87-98. DOI: 10.3866/PKU.WHXB202203043. |
WANG R, LIU Z K, YAN C, et al. Interface strengthening of composite current collectors for high-safety lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(2): 87-98. DOI: 10.3866/PKU.WHXB202203043. | |
81 | WU X X, CHEN S J, LIU D N, et al. Polymer@Cu composite foils with through-hole arrays as lightweight and flexible current collectors for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 74: 109208. DOI: 10.1016/j.est.2023.109208. |
82 | 彭勇, 冯旭宁. 自毁电池研究进展[J]. 工程热物理学报, 2023, 44(8): 2052-2058. |
PENG Y, FENG X N. The progress in self-destruct battery research[J]. Journal of Engineering Thermophysics, 2023, 44(8): 2052-2058. | |
83 | 徐鹏, 孙俊民, 刘忠, 等. 水合硫酸铝加热脱除结晶水的过程动力学机理[J]. 轻金属, 2016(8): 17-21. DOI: 10.13662/j.cnki.qjs.2016.08.005. |
XU P, SUN J M, LIU Z, et al. Kinetic mechanism of heating hydrazine aluminum sulfate dehydration[J]. Light Metals, 2016(8): 17-21. DOI: 10.13662/j.cnki.qjs.2016.08.005. | |
84 | PENG Y, FENG X N, XIA J Z, et al. Polymer based multi-layer Al composite current collector improves battery safety[J]. Chemical Engineering Journal, 2024, 491: 151474. DOI: 10.1016/j.cej.2024.151474. |
85 | HARRIS SJ, LU P. Effects of inhomogeneities-nanoscale to mesoscale-on the durability of Li-ion batteries[J]. The Journal of Physical Chemistry C. 2013, 117(13): 6481-6492. |
86 | BESENHARD J O, WAGNER M W, WINTER M, et al. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes[J]. Journal of Power Sources, 1993, 44(1/2/3): 413-420. DOI: 10.1016/0378-7753(93)80183-P. |
87 | KOMABA S, KAPLAN B, OHTSUKA T, et al. Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(Ⅱ) for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 378-382. DOI: 10.1016/S0378-7753(03)00224-6. |
88 | AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. DOI: 10.1016/S0013-4686(01)00858-1. |
89 | WANG F M, CHENG H M, WU H C, et al. Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries[J]. Electrochimica Acta, 2009, 54(12): 3344-3351. DOI: 10.1016/j.electacta.2008.12.032. |
90 | MATSUO Y, FUMITA K, FUKUTSUKA T, et al. Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes[J]. Journal of Power Sources, 2003, 119: 373-377. DOI: 10.1016/S0378-7753(03)00271-4. |
91 | MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81: 20-26. DOI: 10.1016/S0378-7753(98)00201-8. |
92 | ZAGHIB K, DUBÉ J, DALLAIRE A, et al. Lithium-ion cell components and their effect on high-power battery safety[M]// Lithium-Ion Batteries. Amsterdam: Elsevier, 2014: 437-460. DOI: 10.1016/b978-0-444-59513-3.00019-4. |
93 | DING J, TIAN T F, MENG Q, et al. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 2013, 3: 2485. DOI: 10.1038/srep02485. |
94 | WANG X M, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties[J]. Journal of the Electrochemical Society, 2001, 148(10): A1058. DOI: 10.1149/1.1397773. |
95 | HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 383-387. DOI: 10.1016/S0378-7753(03)00225-8. |
96 | PIRES J, CASTETS A, TIMPERMAN L, et al. Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2015, 296: 413-425. DOI: 10.1016/j.jpowsour.2015.07.065. |
97 | DENG K R, ZENG Q G, WANG D, et al. Nonflammable organic electrolytes for high-safety lithium-ion batteries[J]. Energy Storage Materials, 2020, 32: 425-447. DOI: 10.1016/j.ensm. 2020.07.018. |
98 | ZHU D D, REN Y B, YU Y X, et al. Flame-retardant additive/co-solvent contained in organic solution for safe second batteries: A review[J]. ChemElectroChem, 2023, 10(8). DOI: 10.1002/celc. 202300009. |
99 | DAGGER T, GRÜTZKE M, REICHERT M, et al. Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate[J]. Journal of Power Sources, 2017, 372: 276-285. DOI: 10.1016/j.jpowsour.2017.10.058. |
100 | WANG J H, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3: 22-29. DOI: 10.1038/s41560-017-0033-8. |
101 | CHAWLA N, BHARTI N, SINGH S. Recent advances in non-flammable electrolytes for safer lithium-ion batteries[J]. Batteries, 2019, 5(1): 19. DOI: 10.3390/batteries5010019. |
102 | DENG K R, XU Z L, ZHOU S P, et al. Nonflammable highly-fluorinated polymer electrolytes with enhanced interfacial compatibility for dendrite-free lithium metal batteries[J]. Journal of Power Sources, 2021, 510: 230411. DOI: 10.1016/j.jpowsour.2021.230411. |
103 | AURBACH D, EIN-ELI Y, MARKOVSKY B, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: Ⅱ. Graphite electrodes[J]. Journal of the Electrochemical Society, 1995, 142(9): 2882-2890. DOI: 10.1149/1.2048659. |
104 | YAMADA Y, USUI K, CHIANG C H, et al. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 10892-10899. DOI: 10.1021/am5001163. |
105 | WU Y, REN D S, LIU X, et al. High-voltage and high-safety practical lithium batteries with ethylene carbonate-free electrolyte[J]. Advanced Energy Materials, 2021, 11(47): 2102299. DOI: 10.1002/aenm.202102299. |
106 | WANG Z X, SUN J Q, LIU R, et al. Thin solid polymer electrolyte with high-strength and thermal-resistant via incorporating nanofibrous polyimide framework for stable lithium batteries[J]. Small, 2023, 19(47): e2303422. DOI: 10.1002/smll.202303422. |
107 | WU J Y, RAO Z X, CHENG Z X, et al. Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(46): 1902767. DOI: 10.1002/aenm.201902767. |
108 | CUI Y, WAN J Y, YE Y S, et al. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries[J]. Nano Letters, 2020, 20(3): 1686-1692. DOI: 10.1021/acs.nanolett.9b04815. |
109 | MA Y X, WAN J Y, YANG Y F, et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(15): 2103720. DOI: 10.1002/aenm.202103720. |
110 | LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019, 4: 16-25. DOI: 10.1038/s41560-018-0295-9. |
111 | LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(12): 3857-3886. DOI: 10.1039/C4EE01432D. |
112 | LIU K, ZHUO D, LEE H W, et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator[J]. Advanced Materials, 2017, 29(4): 1603987. DOI: 10.1002/adma.201603987. |
113 | CHOU L Y, YE Y S, LEE H K, et al. Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries[J]. Nano Letters, 2021, 21(5): 2074-2080. DOI: 10.1021/acs.nanolett.0c04568. |
114 | LIU Z F, PENG Y T, MENG T, et al. Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 445-452. DOI: 10.1016/j.ensm.2022.02.020. |
115 | LI S L, XIA L, ZHANG H Y, et al. A poly(3-decyl thiophene)-modified separator with self-actuating overcharge protection mechanism for LiFePO4-based lithium ion battery[J]. Journal of Power Sources, 2011, 196(16): 7021-7024. DOI: 10.1016/j.jpowsour.2010.09.111. |
116 | WU H, ZHUO D, KONG D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5: 5193. DOI: 10.1038/ncomms6193. |
[1] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
[2] | Yuanxiu XING, Zhuanwei LIU, Yufeng XING, Wenbo WANG. BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 370-379. |
[3] | Shifeng YE, Chaofeng HONG, Xiao QI, Weixiong WU, Zijian TAN, Qi ZHOU, Zhaoyang ZHANG. Lithium-ion batteries surface temperature prediction toward EEMD-GRU-NN method [J]. Energy Storage Science and Technology, 2025, 14(1): 380-387. |
[4] | Ke LI, Shunbing ZHU, Zhige TAO, He WANG. Fire suppression experiment of lithium iron phosphate battery with composite water extinguishing agent [J]. Energy Storage Science and Technology, 2025, 14(1): 140-151. |
[5] | Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model [J]. Energy Storage Science and Technology, 2025, 14(1): 331-345. |
[6] | Zheng CHEN, Yue PENG, Jingyuan HU, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. Lithium battery capacity prediction based on short-term charging data and an enhanced whale optimization algorithm [J]. Energy Storage Science and Technology, 2025, 14(1): 319-330. |
[7] | Yingying LIU, Xiaoyuan ZHANG, Mengnan LIU, junzhang SUN, Yan ZHANG. State of health interval estimation for lithium battery via Gaussian process regression with adaptive optimal combination Kernel function [J]. Energy Storage Science and Technology, 2025, 14(1): 346-357. |
[8] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[9] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[10] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[11] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[12] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[13] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[14] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[15] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||