Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1554-1563.doi: 10.19799/j.cnki.2095-4239.2024.0975
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Wenqiang FAN1(), Zinan SHI2(
), Daiming YANG2, Huishi LIANG2, Ye CHEN3
Received:
2024-10-21
Revised:
2024-11-30
Online:
2025-04-28
Published:
2025-05-20
Contact:
Zinan SHI
E-mail:fwq22@mails.tsinghua.edu.cn;shizinan@tsinghua-eiri.org
CLC Number:
Wenqiang FAN, Zinan SHI, Daiming YANG, Huishi LIANG, Ye CHEN. Experimental study on the suppression effect of different coolants on battery thermal runaway[J]. Energy Storage Science and Technology, 2025, 14(4): 1554-1563.
Fig. 3
Voltage variation curve of battery under immersion of different coolants (a) immersion of thermal oil (L-QD350); (b) immersion of 10# transformer oil; (c) immersion of vegetable oil; (d) immersion of silicone oil (50 cSt); (e) immersion of ethylene glycol stock solution; (f) immersion of electronic fluoride liquid (Novec-7200)"
Fig. 4
Temperature variation curve of battery at different positions under immersion of different coolants (a) immersion of thermal oil (L-QD350); (b) immersion of 10# transformer oil; (c) immersion of vegetable oil; (d) immersion of silicone oil (50 cSt); (e) immersion of ethylene glycol stock solution; (f) immersion of electronic fluoride liquid (Novec-7200)"
Fig. 11
Key parameters of thermal runaway development process under different vegetable oil immersion level (a) the moment when the pressure relief valve opens and the voltage drop reaches 0.25U0; (b) the moment of the rapid voltage drop stage; (c) the temperature when the pressure relief valve opens and the voltage drop reaches 0.25U0; (d) the temperature corresponding to the rapid voltage drop stage"
1 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
2 | KONG D P, LV H P, PING P, et al. A review of early warning methods of thermal runaway of lithium ion batteries[J]. Journal of Energy Storage, 2023, 64: 107073. DOI: 10.1016/j.est.2023.107073. |
3 | WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. DOI: 10.1016/j.enconman.2018.12.051. |
4 | WU T T, WANG C H, HU Y X, et al. Research on electrochemical characteristics and heat generating properties of power battery based on multi-time scales[J]. Energy, 2023, 265: 126416. DOI: 10.1016/j.energy.2022.126416. |
5 | 黎华玲, 唐贤文, 邵丹, 等. 锂离子电池热失控气体研究进展[J]. 电池, 2023, 53(1): 98-102. DOI: 10.19535/j.1001-1579.2023.01.022. |
LI H L, TANG X W, SHAO D, et al. Research progress in thermal runaway gas of Li-ion battery[J]. Battery Bimonthly, 2023, 53(1): 98-102. DOI: 10.19535/j.1001-1579.2023.01.022. | |
6 | 李嘉鑫, 李鹏钊, 王苗, 等. 锂离子电池热管理技术研究进展[J]. 过程工程学报, 2023, 23(8): 1102-1117. |
LI J X, LI P Z, WANG M, et al. Research progress of thermal management technology for lithium-ion batteries[J]. The Chinese Journal of Process Engineering, 2023, 23(8): 1102-1117. | |
7 | ROE C, FENG X N, WHITE G, et al. Immersion cooling for lithium-ion batteries-A review[J]. Journal of Power Sources, 2022, 525: 231094. DOI: 10.1016/j.jpowsour.2022.231094. |
8 | WANG Z C, DU C Q. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110685. DOI: 10.1016/j.rser.2020.110685. |
9 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Applied Thermal Engineering, 2020, 175: 115331. DOI: 10.1016/j.applthermaleng.2020.115331. |
10 | ZHAO G, WANG X L, NEGNEVITSKY M, et al. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2023, 219: 119626. DOI: 10.1016/j.applthermaleng.2022.119626. |
11 | 曾少鸿, 吴伟雄, 刘吉臻, 等. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. |
ZENG S H, WU W X, LIU J Z, et al. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. | |
12 | 钟恺为, 王长宏, 吕琪铭, 等. 锂离子电池浸没式冷却的研究进展[J]. 电池, 2024, 54(2): 265-270. DOI: 10.19535/j.1001-1579.2024.02.026. |
ZHONG K W, WANG C H, LYU Q M, et al. Research progress in immersion cooling for Li-ion battery[J]. Battery Bimonthly, 2024, 54(2): 265-270. DOI: 10.19535/j.1001-1579.2024.02.026. | |
13 | SATYANARAYANA G, RUBEN SUDHAKAR D, MUTHYA GOUD V, et al. Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and therminol oil[J]. Applied Thermal Engineering, 2023, 225: 120187. DOI: 10.1016/j.applthermaleng.2023.120187. |
14 | WU S Q, LAO L, WU L, et al. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling[J]. Applied Thermal Engineering, 2022, 201: 117788. DOI: 10.1016/j.applthermaleng.2021.117788. |
15 | BARCA F, CAPOROSSI T, RIZZO S. Silicone oil: Different physical proprieties and clinical applications[J]. BioMed Research International, 2014(1): 502143. DOI: 10.1155/2014/502143. |
16 | AZIZ T, FAN H, KHAN F U, et al. Modified silicone oil types, mechanical properties and applications[J]. Polymer Bulletin, 2019, 76(4): 2129-2145. DOI: 10.1007/s00289-018-2471-2. |
17 | ROZGA P, BEROUAL A, PRZYBYLEK P, et al. A review on synthetic ester liquids for transformer applications[J]. Energies, 2020, 13(23): 6429. DOI: 10.3390/en13236429. |
18 | EL-GENK M S, BOSTANCI H. Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip[J]. International Journal of Heat and Mass Transfer, 2003, 46(10): 1841-1854. DOI: 10.1016/S0017-9310(02)00489-1. |
19 | TUMA P E. The merits of open bath immersion cooling of datacom equipment[C]//2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). February 21-25, 2010, Santa Clara, CA, USA. IEEE, 2010: 123-131. DOI: 10.1109/STHERM.2010.5444305. |
20 | LIU F, HU Q W, JIANG C Y, et al. The suppression performance of fluorinated cooling agents on the lithium-ion batteries fire based on the Accelerating Rate Calorimeter (ARC)[J]. Thermal Science and Engineering Progress, 2023, 42: 101877. DOI: 10.1016/j.tsep.2023.101877. |
21 | 李雨泽. 浸没方式下液体抑制锂电池热失控技术研究[D]. 广汉: 中国民用航空飞行学院, 2022. DOI: 10.27722/d.cnki.gzgmh.2022. 000212. |
LI Y Z. Research on liquid restraining thermal runaway of lithium battery under immersion mode[D]. Guanghan: Civil Aviation Flight University of China, 2022. DOI: 10.27722/d.cnki.gzgmh. 2022.000212. | |
22 | BAI P X, XU R C, LIU M Y, et al. Thermal runaway characteristics of LFP batteries by immersion cooling[J]. ACS Applied Energy Materials, 2023, 6(13): 7205-7211. DOI: 10.1021/acsaem.3c00904. |
[1] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[2] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
[3] | Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. |
[4] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[5] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. |
[6] | Pengjie ZHU, Wei LI, Chu ZHANG, Hao SONG, Beibei LI, Xiumei LIU, Lili LIU. Study on early warning system for thermal runaway of lithium batteries in energy storage cabinets due to smoke and gas diffusion [J]. Energy Storage Science and Technology, 2025, 14(2): 624-635. |
[7] | Zhiying YANG, Wei LU, Jia YAO, Yang CHENG, Dejian WU, Hailong WEN. Liquid-cooled plate cooling channels design based on variable density topology optimization [J]. Energy Storage Science and Technology, 2025, 14(2): 702-713. |
[8] | Jinhao YE, Junhui HOU, Zhengguo ZHANG, Ziye LING, Xiaoming FANG, Silin HUANG, Zhiwen XIAO. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell [J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. |
[9] | Huaiyu HUANG, Silin HUANG, Rongchao ZHAO, Zhiwen XIAO, Junhui HOU, Liwei YAN. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. |
[10] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[11] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[12] | Xu SONG, Nannan SUN, Hengchao CAO, Guixiang ZHU, Menghan LI, Xiaori LIU, Zhonghao RAO. Research on a power battery thermal management system using direct refrigerant cooling with parallel serpentine flow paths [J]. Energy Storage Science and Technology, 2024, 13(8): 2726-2736. |
[13] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
[14] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[15] | Yong CAO, Dapeng YANG, Qing ZHU, Kunfeng LIANG, Xun ZHOU, Yanqin CHANG. Thermal runaway of large capacity lithium-iron phosphate battery pack [J]. Energy Storage Science and Technology, 2024, 13(7): 2462-2469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||