Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2462-2469.doi: 10.19799/j.cnki.2095-4239.2024.0108
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yong CAO1(), Dapeng YANG1, Qing ZHU1,2, Kunfeng LIANG2, Xun ZHOU2, Yanqin CHANG1()
Received:
2024-02-04
Revised:
2024-02-20
Online:
2024-07-28
Published:
2024-07-23
Contact:
Yanqin CHANG
E-mail:yong.cao@calb.cn;yanqin.chang@calb.cn
CLC Number:
Yong CAO, Dapeng YANG, Qing ZHU, Kunfeng LIANG, Xun ZHOU, Yanqin CHANG. Thermal runaway of large capacity lithium-iron phosphate battery pack[J]. Energy Storage Science and Technology, 2024, 13(7): 2462-2469.
1 | HUANG Z H, YU Y, DUAN Q L, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778. |
2 | JIN C Y, SUN Y D, WANG H B, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling[J]. Applied Energy, 2022, 312: 118760. |
3 | JIA Z Z, WANG S P, QIN P, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791. |
4 | 程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. |
CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. | |
5 | 李谦, 于金山, 刘盛终, 等. 不同因素影响下锂离子电池热失控演变特征及危害性综述[J]. 消防科学与技术, 2023, 42(11): 1482-1487. |
LI Q, YU J S, LIU S Z, et al. Review on the characteristics and hazards of lithiumion battery thermal runaway under various conditions[J]. Fire Science and Technology, 2023, 42(11): 1482-1487. | |
6 | 史波波, 沈王赵男, 王志, 等. 液氮抑制外部加热和过充锂电池模组热失控[J]. 中国安全科学学报, 2023, 33(10): 129-136. |
SHI B B, SHEN W, WANG Z, et al. Liquid nitrogen suppresses thermal runaway of lithium-ion battery modules under external heating and overcharge[J]. China Safety Science Journal, 2023, 33(10): 129-136. | |
7 | CAO X, DU J H, QU C, et al. An early diagnosis method for overcharging thermal runaway of energy storage lithium batteries[J]. Journal of Energy Storage, 2024, 75: 109661. |
8 | WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: 120072. |
9 | HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: 121885. |
10 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
11 | ZHANG G X, WEI X Z, TANG X, et al. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110790. |
12 | 齐创, 朱艳丽, 高飞, 等. 过充电条件下锂离子电池热失控数值模拟[J]. 北京理工大学学报, 2017, 37(10): 1048-1055. |
QI C, ZHU Y L, GAO F, et al. Thermal runaway analysis of lithium-ion battery with overcharge[J]. Transactions of Beijing Institute of Technology, 2017, 37(10): 1048-1055. | |
13 | REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340. |
14 | LIU W, ZHAO F, LIU S, et al. Chemical analysis of the cause of thermal runaway of lithium-ion iron phosphate batteries [J]. Journal of The Electrochemical Society, 2021, 168(6): doi: 10.1149/1945-7111/ac0554. |
15 | MAO B, LIU C, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode [J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717. |
16 | ZHOU Z Z, ZHOU X D, JU X Y, et al. Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules[J]. Renewable Energy, 2023, 207: 13-26. |
17 | LI Z J, ZHANG P H, SHANG R X. Effects of heating position on the thermal runaway propagation of a lithium-ion battery module in a battery enclosure[J]. Applied Thermal Engineering, 2023, 222: 119830. |
18 | XU C S, WANG H B, JIANG F C, et al. Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model[J]. Energy, 2023, 268: 126646. |
19 | KWAK E, KIM J H, HONG S H, et al. Detailed modeling investigation of thermal runaway pathways of a lithium iron phosphate battery[J]. International Journal of Energy Research, 2022, 46(2): 1146-1167. |
20 | 国家市场监督管理总局, 国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB 38031—2020[S]. 北京: 中国标准出版社, 2020. |
Standardization Administration of the People's Republic of China. Electric vehicles traction battery safety requirements: GB 38031—2020[S]. Beijing: Standards Press of China, 2020. | |
21 | PENG P, JIANG F M. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1008-1016. |
22 | FENG X N, HE X M, OUYANG M, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNiCoMnO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. |
23 | YU Y, HUANG Z H, MEI W X, et al. Preventing effect of different interstitial materials on thermal runaway propagation of large-format lithium iron phosphate battery module[J]. Journal of Energy Storage, 2023, 63: 107082. |
[1] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[2] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[3] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
[4] | Huanjie LU, Xiaoming CHEN, Zhihao WU, Jinyou QIU. Performance of an integrated cooling system combining a cooling tower and a pipe-embedded phase-change-material slab roof [J]. Energy Storage Science and Technology, 2024, 13(7): 2435-2446. |
[5] | Xiaojun ZHAO, Yingchao WANG, Meng CHEN, Peng YANG, Zhanwang AN, Jianli LIU, Di WU. Reliability analysis of the module busbars of power battery systems [J]. Energy Storage Science and Technology, 2024, 13(7): 2450-2458. |
[6] | Shirong TAN, Wenji YIN, Cuihong ZENG, Xiaoqiong LI, Shuo QI, Fangli JI, Sijiang HU, Hongqiang WANG, Qingyu LI. Role of high temperature quenching in structure and performance of Mn-based layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2399-2406. |
[7] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[8] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[9] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
[10] | Haotian WANG, Yonggang WANG, Xiaoli DONG. Advances in low-temperature organic batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2259-2269. |
[11] | Jiaqi HUANG, Jieming XIONG, Enzhong TAN, Xinyu SUN, Liwei CHENG, Hua WANG. Revisiting the Na metal half-cell at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2151-2160. |
[12] | Xiongwen XU, Ying MO, Wang ZHOU, Huandong YAO, Juan HONG, Hua LEI, Jian TU, Jilei LIU. Effect of hard carbon kinetic properties on low-temperature performance of Na-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2141-2150. |
[13] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[14] | Wentao WANG, Yifan WEI, Kun HUANG, Guowei LV, Siyao ZHANG, Xinya TANG, Zeyan CHEN, Qingyuan LIN, Zhipeng MU, Kunhua WANG, Hua CAI, Jun CHEN. Testing standards and developmental advances for low-temperature Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2300-2307. |
[15] | Guangyu CHENG, Xinwei LIU, Shuo LIU, Haitao GU, Ke WANG. Controlling electrolyte solvent components to enhance cycle life of LCO/C low-temperature 18650 batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2171-2180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||