Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2435-2446.doi: 10.19799/j.cnki.2095-4239.2024.0010
• Energy Storage System and Engineering • Previous Articles Next Articles
Huanjie LU(), Xiaoming CHEN(), Zhihao WU, Jinyou QIU
Received:
2024-01-04
Revised:
2024-03-01
Online:
2024-07-28
Published:
2024-07-23
Contact:
Xiaoming CHEN
E-mail:a15666548059@163.com;xmchen@fjut.edu.cn
CLC Number:
Huanjie LU, Xiaoming CHEN, Zhihao WU, Jinyou QIU. Performance of an integrated cooling system combining a cooling tower and a pipe-embedded phase-change-material slab roof[J]. Energy Storage Science and Technology, 2024, 13(7): 2435-2446.
1 | 李先庭, 赵阳, 魏庆芃, 等. 碳中和背景下我国空调系统发展趋势[J]. 暖通空调, 2022, 52(10): 75-83, 61. DOI: 10.19991/j.hvac1971. 2022.10.12. |
LI X T, ZHAO Y, WEI Q P, et al. Developing trend of air conditioning system oriented to carbon neutrality in China[J]. Heating Ventilating & Air Conditioning, 2022, 52(10): 75-83, 61. DOI: 10.19991/j.hvac1971.2022.10.12. | |
2 | XU X H, WANG S W, WANG J B, et al. Active pipe-embedded structures in buildings for utilizing low-grade energy sources: A review[J]. Energy and Buildings, 2010, 42(10): 1567-1581. DOI: 10.1016/j.enbuild.2010.05.002. |
3 | ZAHIR M H, IRSHAD K, SHAFIULLAH M, et al. Challenges of the application of PCMs to achieve zero energy buildings under hot weather conditions: A review[J]. Journal of Energy Storage, 2023, 64: 107156. DOI: 10.1016/j.est.2023.107156. |
4 | ZHAN H X, MAHYUDDIN N, SULAIMAN R, et al. Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: A review[J]. Construction and Building Materials, 2023, 397: 132312. DOI: 10.1016/j.conbuildmat.2023.132312. |
5 | 鞠杰, 陈瑞芳, 魏钢. 新型相变储能材料在建筑工程中的应用[J]. 储能科学与技术, 2023, 12(12): 3883-3885. DOI: 10.19799/j.cnki.2095-4239.2023.0810. |
JU J, CHEN R F, WEI G. Application of new phase change energy storage materials in building engineering[J]. Energy Storage Science and Technology, 2023, 12(12): 3883-3885. DOI: 10.19799/j.cnki.2095-4239.2023.0810. | |
6 | PATEL B, RATHORE P K S, GUPTA N K, et al. Location optimization of phase change material for thermal energy storage in concrete block for development of energy efficient buildings[J]. Renewable Energy, 2023, 218: 119306. DOI: 10.1016/j.renene.2023.119306. |
7 | YU J H, YANG Q C, YE H, et al. The optimum phase transition temperature for building roof with outer layer PCM in different climate regions of China[J]. Energy Procedia, 2019, 158: 3045-3051. DOI: 10.1016/j.egypro.2019.01.989. |
8 | LI Y R, LONG E S, ZHANG L L, et al. Energy-saving potential of intermittent heating system: Influence of composite phase change wall and optimization strategy[J]. Energy Exploration & Exploitation, 2021, 39(1): 426-443. DOI: 10.1177/0144598720969217. |
9 | 周莹, 王双喜, 刘中华, 等. 基于ANSYS的日光温室复合相变保温墙体的模拟研究[J]. 太阳能学报, 2020, 41(4): 113-122. DOI: 10.19912/j.0254-0096.2020.04.018. |
ZHOU Y, WANG S X, LIU Z H, et al. Simulation study on composite phase change thermal insulation walls in solar greenhouse based on ANSYS[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 113-122. DOI: 10.19912/j.0254-0096.2020.04.018. | |
10 | JAVIDAN M, ASGARI M, GHOLINIA M, et al. Thermal energy storage inside the chamber with a brick wall using the phase change process of paraffinic materials: A numerical simulation[J]. Theoretical and Applied Mechanics Letters, 2022, 12(3): 100329. DOI: 10.1016/j.taml.2022.100329. |
11 | 中华人民共和国住房和城乡建设部. 民用建筑热工设计规范: GB 50176—2016[S]. 北京: 中国建筑工业出版社, 2017. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for thermal design of civil building: GB 50176—2016[S]. Beijing: China Architecture & Building Press, 2017. | |
12 | 陈萨如拉, 常甜馨, 杨洋, 等. 既有建筑嵌管式相变复合墙体夏季热特性研究[J]. 中国科学技术大学学报, 2021, 51(11): 840-856. |
CHEN S R L, CHANG T X, YANG Y, et al. Summer thermal performance study on pipe-embedded PCM composite wall in existing buildings[J]. Justc, 2021, 51(11): 840-856. | |
13 | 朱婷婷, 赵明, 陈昊, 等. 相变储能地板辐射供暖系统蓄热性能数值模拟[J]. 暖通空调, 2015, 45(9): 70-75. |
ZHU T T, ZHAO M, CHEN H, et al. Numerical simulation on heat storage performance of phase change energy storage floor heating system[J]. Heating Ventilating & Air Conditioning, 2015, 45(9): 70-75. | |
14 | 陈晓明. 相变储能通风与空调耦合运行性能分析及节能优化[D]. 长沙: 湖南大学, 2017. |
CHEN X M. Performance analysis and energy-saving optimization of phase change energy storage ventilation coupled with air conditioning[D]. Changsha: Hunan University, 2017. | |
15 | VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. DOI: 10.1016/0017-9310(87)90317-6. |
16 | XU K, XU X H, YAN T. Performance evaluation of a pipe-embedded phase change material (PE-PCM) roof integrated with solar collector[J]. Journal of Building Engineering, 2023, 71: 106582. DOI: 10.1016/j.jobe.2023.106582. |
17 | 田国华. 相变储能建筑墙体传热特性及能耗影响研究[D]. 徐州: 中国矿业大学, 2018. |
TIAN G H. Study on heat transfer characteristics and energy consumption influence of phase change energy storage building walls[D]. Xuzhou: China University of Mining and Technology, 2018. | |
18 | 张红婴, 钟珂, 刘加平. 太阳辐射吸收系数对建筑物全年空调能耗的影响[J]. 东华大学学报(自然科学版), 2017, 43(2): 266-273. DOI: 10.3969/j.issn.1671-0444.2017.02.019. |
ZHANG H Y, ZHONG K, LIU J P. Effect of solar absorption coefficient on annual energy consumption of air-conditioning in building[J]. Journal of Donghua University (Natural Science), 2017, 43(2): 266-273. DOI: 10.3969/j.issn.1671-0444.2017.02.019. | |
19 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. |
20 | 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005: 1-165. |
Meteorological Data Room, Meteorological Information Center, China Meteorological Administration, Department of Building Technology and Science, Tsinghua University. Special meteorological data set for thermal environment analysis of buildings in China[M]. Beijing: China Architecture & Building Press, 2005: 1-165. |
[1] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[2] | Zuogang GUO, Tong LIU, Min XU, Shen XU, Guangming CHEN, Xinyue HAO. Theoretical analysis of a novel ejector augmented compressed air energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1877-1887. |
[3] | Haifeng MA, Wenbo LI, Zonghui CAI, Lin LIU, Tong YU. Research on computer processing technology of flywheel energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1983-1985. |
[4] | Yahui NIE, Xuezhi ZHOU, Dingzhang GUO, Yujie XU, Haisheng CHEN. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1900-1910. |
[5] | Du JIN, Guangchen LIU, Bowen SUN, Tianyuan HUANG, Jianwei ZHANG, Guizhen TIAN, Lili JING. Primary frequency modulation control strategy for flywheel energy storage counting and wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1911-1920. |
[6] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
[7] | Ran XU, Baodong WANG, Shaoliang WANG, Qi ZHANG, Lei ZHANG, Ziyang FENG. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1849-1860. |
[8] | Yi CHEN, Qi QEN, Long ZHAO, Zikun CHEN, Anning WANG. Analysis of China's patent landscape for new energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(6): 2089-2098. |
[9] | Jian SUN, Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG. Summary of research on power storage technology based on heat pump at home and abroad [J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976. |
[10] | Qili LIN, Zhen CHEN, Xiaohu WANG, Hongxun QI, Wei WANG. Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process [J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. |
[11] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[12] | Tao ZHANG, Jiakai LIU, Tianle DAI, Cheng XU. Comparative analysis of thermal performance of electrothermal energy storage and liquid energy storage based on carbon dioxide [J]. Energy Storage Science and Technology, 2024, 13(5): 1554-1563. |
[13] | Haisheng CHEN, Hong LI, Yujie XU, Dehou XU, Liang WANG, Xuezhi ZHOU, Man CHEN, Dongxu HU, Jingwang YAN, Xianfeng LI, Yongsheng HU, Zhongxun AN, Yu LIU, Liye XIAO, Kai JIANG, Guobin ZHONG, Qingsong WNAG, Zhen LI, Xingjian DAI, Yuxin ZHANG, Zhenhua YU, Zhen SONG, Yumin PENG, Yiming MA, Huan GUO, Xing WANG, Xin ZHOU, Aowei HU, Chi ZHANG, Jiayuan XIANG, Hao ZHANG, Wei LIU, Fen YUE, Changkun ZHANG, Fei XIE, Hengheng XIA, Chongyang YANG, Qingquan QIU, Wei AI, Haomiao LI, Xuan LIU, Wenxin MEI, Huang LI. Research progress on energy storage technologies of China in 2023 [J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. |
[14] | Qingyou MA. Research on energy consumption optimization of air conditioning system based on energy storage and intelligent control [J]. Energy Storage Science and Technology, 2024, 13(5): 1592-1594. |
[15] | Wenshuo DAI, Qianyuan GUO, Xiangnan CHEN, Huamin ZHANG, Xiangkun MA. Research progress of bipolar plate materials for vanadium flow battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||