Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (4): 1310-1325.doi: 10.19799/j.cnki.2095-4239.2023.0882
• Energy Storage Materials and Devices • Previous Articles Next Articles
Wenshuo DAI1(), Qianyuan GUO1, Xiangnan CHEN1, Huamin ZHANG1,2, Xiangkun MA1()
Received:
2023-12-06
Revised:
2023-12-20
Online:
2024-04-26
Published:
2024-04-22
Contact:
Xiangkun MA
E-mail:dws1134860928@163.com;maxk@dlmu.edu.cn
CLC Number:
Wenshuo DAI, Qianyuan GUO, Xiangnan CHEN, Huamin ZHANG, Xiangkun MA. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325.
Table 2
Brief description of carbon/polymer composite materials as BP for the VFB reported in the literature"
材料组成 | 制备工艺 | 电导率/ (S/cm) | ASR/ (mΩ·cm2) | 电流密度/(mA/cm2) | EE/% | 参考文献 |
---|---|---|---|---|---|---|
聚苯硫醚、石墨、碳纳米管、偶联剂 | 挤出成型 | 57.3 | — | 50 | 80 | [ |
环氧树脂、天然片状石墨、科琴黑 | 模压成型 | 114 | 40 | 85 | [ | |
聚乙烯、石墨混合物(石墨、石墨烯)、碳纤维 | 模压成型 | 420.6 | 5 | 100 | 88 | [ |
含氟弹性体、纳米炭黑、碳纤维织物预浸料 | 模压成型、 “软层法” | — | 143 | 100 | 80.4 | [ |
聚偏氟乙烯、膨胀石墨粉、石墨粉、仙人掌状纳米碳纤维 | 模压成型、 表面处理 | 198.7 | 25.4 | 200 | 75.23 | [ |
聚苯胺、碳纤维织物预浸料 | 模压成型、 “软层法” | — | 16.7 | 100 | 81.54 | [ |
热塑性硫化橡胶、人造石墨、碳纤维织物、热解石墨片 | 挤出-模压 复合工艺 | 595.62 | 6.46 | — | — | [ |
1 | 许洪华, 邵桂萍, 鄂春良, 等. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
XU H H, SHAO G P, E C L, et al. Research on China's future energy system and the realistic path of energy transformation[J]. Power Generation Technology, 2023, 44(4): 484-491. | |
2 | ZHU Q Y, CHEN X F, SONG M L, et al. Impacts of renewable electricity standard and renewable energy certificates on renewable energy investments and carbon emissions[J]. Journal of Environmental Management, 2022, 306: 114495. |
3 | AMIRANTE R, CASSONE E, DISTASO E, et al. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies[J]. Energy Conversion and Management, 2017, 132: 372-387. |
4 | ZHANG C Y, YANG Y, LIU X, et al. Mobile energy storage technologies for boosting carbon neutrality[J]. Innovation (Cambridge (Mass)), 2023, 4(6): 100518. |
5 | ZHANG X J, QIN C C, LOTH E, et al. Arbitrage analysis for different energy storage technologies and strategies[J]. Energy Reports, 2021, 7: 8198-8206. |
6 | 韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(S1): 4-12. |
WEI M M, XIANG D X. Application and development trend of energy storage [J]. Industrial Safety and Environmental Protection, 2023, 49(S1): 4-12. | |
7 | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. | |
8 | SKYLLAS-KAZACOS M, CHAKRABARTI M H, HAJIMOLANA S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8): R55. |
9 | XIE C Y, YAN H, SONG Y F, et al. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries [J]. Journal of Power Sources, 2023, 564: 232860. |
10 | XU Z C, FAN Q, LI Y, et al. Review of zinc dendrite formation in zinc bromine redox flow battery[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109838. |
11 | SUN K, QI M Y, GUO X R, et al. Research on performance optimization of novel sector-shape all-vanadium flow battery[J]. Sustainability, 2023, 15(19): 14520. |
12 | 陈金庆, 汪钱, 王保国. 全钒液流电池关键材料研究进展[J]. 现代化工, 2006, 26(9): 21-24. |
CHEN J Q, WANG Q, WANG B G. Research progress in key materials for all vanadium redox flow battery[J]. Modern Chemical Industry, 2006, 26(9): 21-24. | |
13 | SATOLA B, KIRCHNER C N, KOMSIYSKA L, et al. Chemical stability of graphite-polypropylene bipolar plates for the vanadium redox flow battery at resting state[J]. Journal of the Electrochemical Society, 2016, 163(10): A2318-A2325. |
14 | SRIVASTAVA A, ROSS K A, SMITH C B. Coating developments towards enabling aluminum as a bipolar plate material for PEM fuel cells[J]. Journal of Power Sources, 2023, 582: 233513. |
15 | XIONG K N, WU W, WANG S F, et al. Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review[J]. Applied Energy, 2021, 301: 117443. |
16 | KE X Y, PRAHL J M, et al. Rechargeable redox flow batteries: Flow fields, stacks and design considerations[J]. Chemical Society Reviews, 2018, 47(23): 8721-8743. |
17 | LIM J W, LEE D G. Carbon fiber/polyethylene bipolar plate-carbon felt electrode assembly for vanadium redox flow batteries (VRFB)[J]. Composite Structures, 2015, 134: 483-492. |
18 | TAHERIAN R. RETRACTED: A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265: 370-390. |
19 | LIU R X, JIA Q, ZHANG B, et al. Protective coatings for metal bipolar plates of fuel cells: A review[J]. International Journal of Hydrogen Energy, 2022, 47(54): 22915-22937. |
20 | CHEN Z H, ZHANG G H, YANG W Z, et al. Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells[J]. Chemical Engineering Journal, 2020, 393: 124675. |
21 | TAN Q Y, WANG Y L. Preparation and performances of modified Ti4O7 doped polypyrrole coating for metallic bipolar plates[J]. Corrosion Science, 2021, 190: 109703. |
22 | HAN J, YOO H, KIM M, et al. High-performance bipolar plate of thin IrOx-coated TiO2 nanotubes in vanadium redox flow batteries[J]. Catalysis Today, 2017, 295: 132-139. |
23 | KIM S, YOON Y, NAREJO G M, et al. Flexible graphite bipolar plates for vanadium redox flow batteries[J]. International Journal of Energy Research, 2021, 45(7): 11098-11108. |
24 | REED D, THOMSEN E, LI B, et al. Stack developments in a kW class all vanadium mixed acid redox flow battery at the Pacific northwest national laboratory[J]. Journal of the Electrochemical Society, 2015, 163(1): A5211-A5219. |
25 | 徐冬清, 范永生, 刘平, 等. 全钒液流电池复合材料双极板研究[J]. 高校化学工程学报, 2011, 25(2): 308-313. |
XU D Q, FAN Y S, LIU P, et al. Research of composite bipolar plate used for vanadium redox flow battery[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2): 308-313. | |
26 | CHAKRABARTI M H, BRANDON N P, HAJIMOLANA S A, et al. Application of carbon materials in redox flow batteries[J]. Journal of Power Sources, 2014, 253: 150-166. |
27 | CAGLAR B, FISCHER P, KAURANEN P, et al. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2014, 256: 88-95. |
28 | 骆兵, 倪红军, 黄明宇, 等. PEMFC双极板材料及其工艺[J]. 电源技术, 2006, 30(2): 162-164, 172. |
LUO B, NI H J, HUANG M Y, et al. Study on the materials and processes for bipolar plates in PEMFC[J]. Chinese Journal of Power Sources, 2006, 30(2): 162-164, 172. | |
29 | SATOLA B. Review—Bipolar plates for the vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2021, 168(6): 060503. |
30 | CAGLAR B, RICHARDS J, FISCHER P, et al. Conductive polymer composites and coated metals As alternative bipolar plate materials for all-vanadium redox-flow batteries[J]. Advanced Materials Letters, 2014, 5(6): 299-308. |
31 | LOKTIONOV P, KARTASHOVA N, KONEV D, et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery[J]. International Journal of Energy Research, 2022, 46(8): 10123-10132. |
32 | PARK M, JUNG Y J, RYU J, et al. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2014, 2(38): 15808-15815. |
33 | LIAO W N, JIANG F J, ZHANG Y, et al. Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries[J]. Renewable Energy, 2020, 152: 1310-1316. |
34 | YU H N, LIM J W, DO SUH J, et al. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2011, 196(23): 9868-9875. |
35 | LEE D, LIM J W, NAM S, et al. Method for exposing carbon fibers on composite bipolar plates[J]. Composite Structures, 2015, 134: 1-9. |
36 | NAM S, LEE D, LEE D G, et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)[J]. Composite Structures, 2017, 159: 220-227. |
37 | LIU Z H, WANG B G, YU L X. Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery[J]. Journal of Energy Chemistry, 2018, 27(5): 1369-1375. |
38 | JIANG F J, LIAO W N, AYUKAWA T, et al. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers[J]. Journal of Power Sources, 2021, 482: 228903. |
39 | CHOE J, WOO LIM J. Conductive nanoparticle-embedded carbon composite bipolar plates for vanadium redox flow batteries[J]. Composite Structures, 2024, 329: 117770. |
40 | ONYU K, YEETSORN R, GOSTICK J. Fabrication of bipolar plates from thermoplastic elastomer composites for vanadium redox flow battery[J]. Polymers, 2022, 14(11): 2143. |
41 | KAPOOR M, GAUTAM R K, RAMANI V K, et al. Predicting operational capacity of redox flow battery using a generalized empirical correlation derived from dimensional analysis[J]. Chemical Engineering Journal, 2020, 379: 122300. |
42 | YANG W W, BAI X S, ZHANG W Y, et al. Numerical examination of the performance of a vanadium redox flow battery under variable operating strategies[J]. Journal of Power Sources, 2020, 457: 228002. |
43 | PAN L M, SUN J, QI H H, et al. Dead-zone-compensated design as general method of flow field optimization for redox flow batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(37): e2305572120. |
44 | KUMAR S, JAYANTI S. Effect of flow field on the performance of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2016, 307: 782-787. |
45 | LEE J, KIM J, PARK H. Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29483-29492. |
46 | GUNDLAPALLI R, BHATTARAI A, RANJAN R, et al. Characterization and scale-up of serpentine and interdigitated flow fields for application in commercial vanadium redox flow batteries[J]. Journal of Power Sources, 2022, 542: 231812. |
47 | QIAN P, ZHANG H M, CHEN J, et al. A novel electrode-bipolar plate assembly for vanadium redox flow battery applications[J]. Journal of Power Sources, 2008, 175(1): 613-620. |
48 | JING M, ZHANG C, QI X, et al. Gradient-microstructural porous graphene gelatum/flexible graphite plate integrated electrode for vanadium redox flow batteries [J]. International Journal of Hydrogen Energy, 2020, 45(1): 916-923. |
49 | JEONG K I, JEONG J M, OH J, et al. An integrated composite structure with reduced electrode/bipolar plate contact resistance for vanadium redox flow battery[J]. Composites Part B: Engineering, 2022, 233: 109657. |
50 | GAUTAM R K, KUMAR A. A review of bipolar plate materials and flow field designs in the all-vanadium redox flow battery[J]. Journal of Energy Storage, 2022, 48: 104003. |
51 | DUAN Z N, QU Z G, REN Q L, et al. Review of bipolar plate in redox flow batteries: Materials, structures, and manufacturing[J]. Electrochemical Energy Reviews, 2021, 4(4): 718-756. |
[1] | Huamin ZHANG. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. |
[2] | Shuang ZHANG, Jianing XU, Rongrong ZHANG, Zonghao LIU, Chenqi WANG, Ruonan LIU, Minglin RONG. State-of-health characteristics of all-vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(12): 4022-4029. |
[3] | Mengyao QI, Yichen HOU, Lei CHEN, Lijun YANG. Numerical simulation of a novel radial all-vanadium flow battery cell [J]. Energy Storage Science and Technology, 2022, 11(10): 3209-3220. |
[4] | Xian DING, Tao FENG, Guangli HE, Ting HU, Yanjiang LIU. Research progress of the influence of wind power and photovoltaic of power fluctuation on water electrolyzer for hydrogen production [J]. Energy Storage Science and Technology, 2022, 11(10): 3275-3284. |
[5] | Shouli WEI, Xichao LI, Xiuliang CHANG, Bing CHEN, Zhuo XU, Tao ZHANG, Lili ZHENG, Zuoqiang DAI. Review of development of bipolar plate materials for solid oxide fuel cell [J]. Energy Storage Science and Technology, 2021, 10(6): 1943-1951. |
[6] | SHEN Haifeng, ZHU Xinjian, CAO Hongfei, SHAO Mengchen. Dynamic modeling of all-vanadium flow battery [J]. Energy Storage Science and Technology, 2018, 7(1): 135-. |
[7] | XIE Congxin1,2, ZHENG Qiong1, LI Xianfeng1,3, ZHANG Huamin1,3. Current advances in the flow battery technology [J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057. |
[8] | JING Minghua, FAN Xinzhuang, LIU Jianguo, YAN Chuanwei. Electrochemical behavior of graphene oxide modified carbon felt as the positive electrode for vanadium flow battery#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 263-269. |
[9] | WANG Xiaoli, ZHANG Yu, LI Ying, ZHANG Huamin. Vanadium flow battery technology and its industrial status [J]. Energy Storage Science and Technology, 2015, 4(5): 458-466. |
[10] | XING Feng, ZHENG Qiong, ZHANG Huamin, LI Xianfeng, MA Xiangkun. The measurement of Kozeny-Carman constant in porous electrode of vanadium flow battery [J]. Energy Storage Science and Technology, 2015, 4(5): 506-509. |
[11] | XU Weiguo, LIU Jianguo, QIN Ye, YAN Chuanwei. Development of electrolyte thermodynamic studies for vanadium flow battery [J]. Energy Storage Science and Technology, 2014, 3(5): 513-519. |
[12] | WU Xuran, LIAO Sida, LI Bingyang, HONG Weichen, WANG Baoguo. Theoretical and technological aspects of flow batteries:Review of study on CF reinforced composite bipolar plate [J]. Energy Storage Science and Technology, 2014, 3(3): 283-287. |
[13] | LI Wenyue, WEI Guanjie, LIU Jianguo, YAN Chuanwei. Electrode materials for all vanadium flow batteries:A review [J]. Energy Storage Science and Technology, 2013, 2(4): 342-348. |
[14] | ZHANG Huamin, WANG Xiaoli. Recent progress on vanadium flow battery technologies [J]. Energy Storage Science and Technology, 2013, 2(3): 281-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||