Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1900-1910.doi: 10.19799/j.cnki.2095-4239.2023.0962
• Energy Storage System and Engineering • Previous Articles Next Articles
Yahui NIE1,2(), Xuezhi ZHOU2,3,4, Dingzhang GUO2,3, Yujie XU2,3, Haisheng CHEN2,3,4(
)
Received:
2023-12-29
Revised:
2024-01-16
Online:
2024-06-28
Published:
2024-06-26
Contact:
Haisheng CHEN
E-mail:nieyahui@iet.cn;chen_hs@iet.cn
CLC Number:
Yahui NIE, Xuezhi ZHOU, Dingzhang GUO, Yujie XU, Haisheng CHEN. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms[J]. Energy Storage Science and Technology, 2024, 13(6): 1900-1910.
Table 2
Daily configuration plan for a typical day of spring"
时段 | 该时段RGES系统 总出力/MW | 该时段 配置重块总质量/t | 该时段 配置车辆总数/辆 | 该时段车辆匀速阶段 上/下坡速度/(km/h) |
---|---|---|---|---|
22:00 | 3.98 | 920 | 10 | 6 |
23:00 | 8.02 | 1012 | 11 | 11 |
0:00 | 8.02 | 1012 | 11 | 11 |
1:00 | 3.58 | 276 | 3 | 18 |
2:00 | 30.62 | 1932 | 21 | 22 |
3:00 | 15.51 | 1656 | 18 | 13 |
4:00 | 8.35 | 1932 | 21 | 6 |
5:00 | 21.87 | 2024 | 22 | 15 |
6:00 | 23.33 | 2024 | 22 | 16 |
7:00 | 19.88 | 1840 | 20 | 15 |
8:00 | 16.48 | 920 | 10 | 26 |
9:00 | 4.06 | 368 | 4 | 16 |
10:00 | 11.12 | 828 | 9 | 19.5 |
11:00 | 10.39 | 736 | 8 | 20.5 |
12:00 | 1.39 | 92 | 1 | 22 |
13:00 | 0.76 | 184 | 2 | 6 |
14:00 | 1.43 | 276 | 3 | 7.5 |
15:00 | 3.42 | 184 | 2 | 27 |
16:00 | 0.60 | 92 | 1 | 9.5 |
17:00 | 1.27 | 184 | 2 | 10 |
18:00 | 8.74 | 552 | 6 | 23 |
19:00 | 8.62 | 1564 | 17 | 8 |
20:00 | 7.13 | 276 | 3 | 37.5 |
21:00 | 8.93 | 276 | 3 | 47 |
22:00 | 19.87 | 1012 | 11 | 28.5 |
1 | 唐葆君, 李茹. 可再生能源成本下降对电力行业碳达峰与碳中和的影响[J]. 企业经济, 2021, 40(8): 53-63. |
TANG B J, LI R. Impact of reduced renewable energy costs on carbon peak and carbon neutrality of power industry[J]. Enterprise Economy, 2021, 40(8): 53-63. | |
2 | WU J J, TANG G H, WANG R, et al. Multi-objective optimization for China's power carbon emission reduction by 2035[J]. Journal of Thermal Science, 2019, 28(2): 184-194. |
3 | DING J, XU Y J, WANG Z Y, et al. Estimating the economics of electrical energy storage based on different policies in China[J]. Journal of Thermal Science, 2020, 29(2): 352-364. |
4 | 刘圣春, 宋丽莹, 代宝民, 等. 附加碳税的综合能源系统优化调度分析[J]. 工程热物理学报, 2022, 43(7): 1790-1800. |
LIU S C, SONG L Y, DAI B M, et al. Analysis on optimal dispatching of integrated energy system with additional carbon tax[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1790-1800. | |
5 | ERDIWANSYAH, MAHIDIN, HUSIN H, et al. A critical review of the integration of renewable energy sources with various technologies[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 3. |
6 | 张敏, 王建学, 王秀丽, 等. 面向新能源消纳的调峰辅助服务市场双边交易机制与模型[J]. 电力自动化设备, 2021, 41(1): 84-91. |
ZHANG M, WANG J X, WANG X L, et al. Bilateral trading mechanism and model of peak regulation auxiliary service market for renewable energy accommodation[J]. Electric Power Automation Equipment, 2021, 41(1): 84-91. | |
7 | TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: 105226. |
8 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
9 | BERRADA A, LOUDIYI K, ZORKANI I. Dynamic modeling and design considerations for gravity energy storage[J]. Journal of Cleaner Production, 2017, 159: 336-345. |
10 | Gravitricity renewable energy storage[EB/OL]. [2023-12-20]. https://gravitricity.com/. |
11 | MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. |
12 | Energy vault[EB/OL]. [2023-12-20]. https://energyvault.com/. |
13 | HUNT J D, ZAKERI B, FALCHETTA G, et al. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies[J]. Energy, 2020, 190: 116419. |
14 | Advanced rail energy storage (ARES) [EB/OL]. (2022-09-29) [2022-10-11]. https:// aresnorthamerica.com/. |
15 | PEITZKE W R, BROWN M B, ERDMAN W L, et al. Utility scale electric energy storage system: US8593012[P]. 2013-11-26. |
16 | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. |
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. | |
17 | PEITZKE W R, BROWN M B. Combined synchronous and asynchronous power supply for electrically powered shuttle trains: US20120265378[P]. 2012-10-18. |
18 | 肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24. |
XIAO L, SHI L, WEI T, et al. Railway track carrier vehicle energy storage system: CN108437808A[P]. 2018-08-24. | |
19 | 曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙: 长沙理工大学, 2016. |
ZENG R. Research on mountain energy technology and its capacity configuration with wind farm[D]. Changsha: Changsha University of Science & Technology, 2016. | |
20 | 徐焘. 基于重力储能的风光储多能源混合系统容量配置研究[D]. 武汉: 武汉理工大学, 2021. |
XU T. Research on capacity configuration of the wind-photovoltaic-storage multi-energy hybrid power system based on gravity energy storage[D].Wuhan: Wuhan University of Technology, 2021. | |
21 | BOTTENFIELD G, HATIPOGLU K, PANTA Y. Advanced rail energy and storage: Analysis of potential implementations for the state of West Virginia[C]//2018 North American Power Symposium (NAPS). Fargo, ND, USA. IEEE, 2018: 1-4. |
22 | 侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49(17): 74-84. |
HOU H, XU T, XIAO Z F, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power System Protection and Control, 2021, 49(17): 74-84. | |
23 | 柴源. 基于改进鲸鱼算法的风-光-重力储能系统优化配置研究[D]. 西安: 西安理工大学, 2021. |
CHAI Y. Study on optimal configuration of wind power-photovoltaic-gravity energy storage system based on improved whale algorithm[D]. Xi'an: Xi'an University of Technology, 2021. | |
24 | MOAZZAMI M, MORADI J, et al. Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system[J]. International Journal of Renewable Energy Research, 2018, 8(2): 1155-1164. |
25 | HOU H, XU T, WU X X, et al. Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system[J]. Applied Energy, 2020, 271: 115052. |
26 | 刘志刚, 伍也凡, 肖振锋, 等. 基于重力储能的风光储系统多目标容量优化规划[J]. 全球能源互联网, 2021, 4(5): 464-475. |
LIU Z G, WU Y F, XIAO Z F, et al. Multi-objective optimal capacity planning of the wind-photovoltaic-storage system based on gravity energy storage[J]. Journal of Global Energy Interconnection, 2021, 4(5): 464-475. | |
27 | 刘智洋, 宋杭选, 方宽, 等. 依托重力储能的高寒地区风-储联合发电系统容量优化[J]. 黑龙江电力, 2023, 45(1): 30-35. |
LIU Z Y, SONG H X, FANG K, et al. Capacity optimization of wind-storage combined power generation system in alpine region based on gravity energy storage[J]. Heilongjiang Electric Power, 2023, 45(1): 30-35. | |
28 | 崔文倩, 魏军强, 赵云灏, 等. 双碳目标下含重力储能的配电网多目标运行优化[J]. 电力建设, 2023, 44(4): 45-53. |
CUI W Q, WEI J Q, ZHAO Y H, et al. Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J]. Electric Power Construction, 2023, 44(4): 45-53. | |
29 | 卢子敬, 蒋霖, 李东伟, 等. 基于鲸鱼算法的新能源储能系统调度模型研究[J]. 信息技术, 2023, 47(7): 125-130, 135. |
LU Z J, JIANG L, LI D W, et al. Research on scheduling model of new energy storage system based on whale algorithm[J]. Information Technology, 2023, 47(7): 125-130, 135. | |
30 | 任永峰, 薛宇, 云平平, 等. 马尔可夫预测的多目标优化储能系统平抑风电场功率波动[J]. 电力系统自动化, 2020, 44(6): 67-74. |
REN Y F, XUE Y, YUN P P, et al. Multi-objective optimization of energy storage system with Markov prediction for power fluctuation suppression of wind farm[J]. Automation of Electric Power Systems, 2020, 44(6): 67-74. | |
31 | 薛艳冰, 马大炜, 王烈. 列车牵引能耗计算方法[J]. 中国铁道科学, 2007, 28(3): 84-87. |
XUE Y B, MA D W, WANG L. Calculation method of energy consumption in train traction[J]. China Railway Science, 2007, 28(3): 84-87. | |
32 | 中华人民共和国铁道部. 列车牵引计算规程: TB/T 1407—1998[S]. 北京: 中国铁道出版社, 1999. |
33 | WADA N, MATSUI Y. Driving force control for a vehicle considering slip ratio limitation[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 297-302. |
34 | 余志生. 汽车理论[M]. 5版. 北京: 机械工业出版社, 2009. |
35 | 河北省发展和改革委员会关于明确居民峰谷分时电价政策的通知[EB/OL]. (2022-12-06)[2023-01-05]. https://info.hebei.gov.cn/hbszfxxgk/329975/329988/330035/6852718/7049247/index.html?eqid=9b5c7818000111990000000564268a |
[1] | Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG, Gaoyun WU, Zufan WANG, Haisen ZHAO. Energy efficiency analysis model and experimental verification of vertical gravity energy storage system based on belt drive [J]. Energy Storage Science and Technology, 2025, 14(3): 1141-1149. |
[2] | Tian GAO, Zufan WANG, Shuyang FANG, Youkang ZHANG, Liancheng ZHANG, Yongzhang HUANG, Haisen ZHAO. Energy efficiency analysis model and experimental verification of gravity energy storage system with gear box and chain transmission mechanisms [J]. Energy Storage Science and Technology, 2025, 14(2): 688-698. |
[3] | Yuzhen DUAN, Jingfen YANG, Shunyu YANG. Application and popularization of physical energy storage technology in power system [J]. Energy Storage Science and Technology, 2025, 14(2): 699-701. |
[4] | Wenju YAN, Yang WANG, Xinzhu SUN, Hao CHEN, Qing WANG. Research progress and key technology of abandoned mine gravity energy storage system based on linear motor [J]. Energy Storage Science and Technology, 2025, 14(1): 255-268. |
[5] | Dameng LIU, Xuepeng MOU, Bohao SHI, Julong CHEN, Bin WANG, Chen LUO, Chengjun ZHONG, Sizhe CHEN. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. |
[6] | Zheng LI, Julong CHEN, Wenlin LI, Yu ZHANG, Jierui YANG, Sizhe CHEN. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. |
[7] | Du JIN, Guangchen LIU, Bowen SUN, Tianyuan HUANG, Jianwei ZHANG, Guizhen TIAN, Lili JING. Primary frequency modulation control strategy for flywheel energy storage counting and wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1911-1920. |
[8] | Jingye ZHANG, Yuxin LIN, Qingquan QIU, Liye XIAO. Gravity energy storage technology based on slopes and mountains [J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. |
[9] | Qingquan QIU, Xiaoyue LUO, Yuxin LIN, Qingshan WANG, Yan LI, Zipan NIE, Jingye ZHANG, Liye XIAO. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. |
[10] | Rui ZHOU, Jianfeng HONG, Junci CAO, Wei QIN, Zhuoyue ZHAO. Research on power generation efficiency and stabilization strategies for vertical gravity energy storage [J]. Energy Storage Science and Technology, 2024, 13(10): 3556-3565. |
[11] | Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. |
[12] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[13] | Su WANG, Liye XIAO, Wenbing TANG, Jingye ZHANG, Qingquan QIU, Wenyong GUO, Dong ZHANG. Review of new gravity energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. |
[14] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[15] | MI Zengqiang1, BAI Jun1, LIU Liqing1, FAN Weidong2, YANG Zaimin2. Research on regulation strategy of storage-based wind farm after black-start of thermal power unit [J]. Energy Storage Science and Technology, 2017, 6(1): 147-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||