Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1900-1910.doi: 10.19799/j.cnki.2095-4239.2023.0962
• Energy Storage System and Engineering • Previous Articles Next Articles
Yahui NIE1,2(), Xuezhi ZHOU2,3,4, Dingzhang GUO2,3, Yujie XU2,3, Haisheng CHEN2,3,4()
Received:
2023-12-29
Revised:
2024-01-16
Online:
2024-06-28
Published:
2024-06-26
Contact:
Haisheng CHEN
E-mail:nieyahui@iet.cn;chen_hs@iet.cn
CLC Number:
Yahui NIE, Xuezhi ZHOU, Dingzhang GUO, Yujie XU, Haisheng CHEN. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms[J]. Energy Storage Science and Technology, 2024, 13(6): 1900-1910.
Table 2
Daily configuration plan for a typical day of spring"
时段 | 该时段RGES系统 总出力/MW | 该时段 配置重块总质量/t | 该时段 配置车辆总数/辆 | 该时段车辆匀速阶段 上/下坡速度/(km/h) |
---|---|---|---|---|
22:00 | 3.98 | 920 | 10 | 6 |
23:00 | 8.02 | 1012 | 11 | 11 |
0:00 | 8.02 | 1012 | 11 | 11 |
1:00 | 3.58 | 276 | 3 | 18 |
2:00 | 30.62 | 1932 | 21 | 22 |
3:00 | 15.51 | 1656 | 18 | 13 |
4:00 | 8.35 | 1932 | 21 | 6 |
5:00 | 21.87 | 2024 | 22 | 15 |
6:00 | 23.33 | 2024 | 22 | 16 |
7:00 | 19.88 | 1840 | 20 | 15 |
8:00 | 16.48 | 920 | 10 | 26 |
9:00 | 4.06 | 368 | 4 | 16 |
10:00 | 11.12 | 828 | 9 | 19.5 |
11:00 | 10.39 | 736 | 8 | 20.5 |
12:00 | 1.39 | 92 | 1 | 22 |
13:00 | 0.76 | 184 | 2 | 6 |
14:00 | 1.43 | 276 | 3 | 7.5 |
15:00 | 3.42 | 184 | 2 | 27 |
16:00 | 0.60 | 92 | 1 | 9.5 |
17:00 | 1.27 | 184 | 2 | 10 |
18:00 | 8.74 | 552 | 6 | 23 |
19:00 | 8.62 | 1564 | 17 | 8 |
20:00 | 7.13 | 276 | 3 | 37.5 |
21:00 | 8.93 | 276 | 3 | 47 |
22:00 | 19.87 | 1012 | 11 | 28.5 |
1 | 唐葆君, 李茹. 可再生能源成本下降对电力行业碳达峰与碳中和的影响[J]. 企业经济, 2021, 40(8): 53-63. |
TANG B J, LI R. Impact of reduced renewable energy costs on carbon peak and carbon neutrality of power industry[J]. Enterprise Economy, 2021, 40(8): 53-63. | |
2 | WU J J, TANG G H, WANG R, et al. Multi-objective optimization for China's power carbon emission reduction by 2035[J]. Journal of Thermal Science, 2019, 28(2): 184-194. |
3 | DING J, XU Y J, WANG Z Y, et al. Estimating the economics of electrical energy storage based on different policies in China[J]. Journal of Thermal Science, 2020, 29(2): 352-364. |
4 | 刘圣春, 宋丽莹, 代宝民, 等. 附加碳税的综合能源系统优化调度分析[J]. 工程热物理学报, 2022, 43(7): 1790-1800. |
LIU S C, SONG L Y, DAI B M, et al. Analysis on optimal dispatching of integrated energy system with additional carbon tax[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1790-1800. | |
5 | ERDIWANSYAH, MAHIDIN, HUSIN H, et al. A critical review of the integration of renewable energy sources with various technologies[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 3. |
6 | 张敏, 王建学, 王秀丽, 等. 面向新能源消纳的调峰辅助服务市场双边交易机制与模型[J]. 电力自动化设备, 2021, 41(1): 84-91. |
ZHANG M, WANG J X, WANG X L, et al. Bilateral trading mechanism and model of peak regulation auxiliary service market for renewable energy accommodation[J]. Electric Power Automation Equipment, 2021, 41(1): 84-91. | |
7 | TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: 105226. |
8 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
9 | BERRADA A, LOUDIYI K, ZORKANI I. Dynamic modeling and design considerations for gravity energy storage[J]. Journal of Cleaner Production, 2017, 159: 336-345. |
10 | Gravitricity renewable energy storage[EB/OL]. [2023-12-20]. https://gravitricity.com/. |
11 | MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. |
12 | Energy vault[EB/OL]. [2023-12-20]. https://energyvault.com/. |
13 | HUNT J D, ZAKERI B, FALCHETTA G, et al. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies[J]. Energy, 2020, 190: 116419. |
14 | Advanced rail energy storage (ARES) [EB/OL]. (2022-09-29) [2022-10-11]. https:// aresnorthamerica.com/. |
15 | PEITZKE W R, BROWN M B, ERDMAN W L, et al. Utility scale electric energy storage system: US8593012[P]. 2013-11-26. |
16 | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. |
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. | |
17 | PEITZKE W R, BROWN M B. Combined synchronous and asynchronous power supply for electrically powered shuttle trains: US20120265378[P]. 2012-10-18. |
18 | 肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24. |
XIAO L, SHI L, WEI T, et al. Railway track carrier vehicle energy storage system: CN108437808A[P]. 2018-08-24. | |
19 | 曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙: 长沙理工大学, 2016. |
ZENG R. Research on mountain energy technology and its capacity configuration with wind farm[D]. Changsha: Changsha University of Science & Technology, 2016. | |
20 | 徐焘. 基于重力储能的风光储多能源混合系统容量配置研究[D]. 武汉: 武汉理工大学, 2021. |
XU T. Research on capacity configuration of the wind-photovoltaic-storage multi-energy hybrid power system based on gravity energy storage[D].Wuhan: Wuhan University of Technology, 2021. | |
21 | BOTTENFIELD G, HATIPOGLU K, PANTA Y. Advanced rail energy and storage: Analysis of potential implementations for the state of West Virginia[C]//2018 North American Power Symposium (NAPS). Fargo, ND, USA. IEEE, 2018: 1-4. |
22 | 侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49(17): 74-84. |
HOU H, XU T, XIAO Z F, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power System Protection and Control, 2021, 49(17): 74-84. | |
23 | 柴源. 基于改进鲸鱼算法的风-光-重力储能系统优化配置研究[D]. 西安: 西安理工大学, 2021. |
CHAI Y. Study on optimal configuration of wind power-photovoltaic-gravity energy storage system based on improved whale algorithm[D]. Xi'an: Xi'an University of Technology, 2021. | |
24 | MOAZZAMI M, MORADI J, et al. Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system[J]. International Journal of Renewable Energy Research, 2018, 8(2): 1155-1164. |
25 | HOU H, XU T, WU X X, et al. Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system[J]. Applied Energy, 2020, 271: 115052. |
26 | 刘志刚, 伍也凡, 肖振锋, 等. 基于重力储能的风光储系统多目标容量优化规划[J]. 全球能源互联网, 2021, 4(5): 464-475. |
LIU Z G, WU Y F, XIAO Z F, et al. Multi-objective optimal capacity planning of the wind-photovoltaic-storage system based on gravity energy storage[J]. Journal of Global Energy Interconnection, 2021, 4(5): 464-475. | |
27 | 刘智洋, 宋杭选, 方宽, 等. 依托重力储能的高寒地区风-储联合发电系统容量优化[J]. 黑龙江电力, 2023, 45(1): 30-35. |
LIU Z Y, SONG H X, FANG K, et al. Capacity optimization of wind-storage combined power generation system in alpine region based on gravity energy storage[J]. Heilongjiang Electric Power, 2023, 45(1): 30-35. | |
28 | 崔文倩, 魏军强, 赵云灏, 等. 双碳目标下含重力储能的配电网多目标运行优化[J]. 电力建设, 2023, 44(4): 45-53. |
CUI W Q, WEI J Q, ZHAO Y H, et al. Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J]. Electric Power Construction, 2023, 44(4): 45-53. | |
29 | 卢子敬, 蒋霖, 李东伟, 等. 基于鲸鱼算法的新能源储能系统调度模型研究[J]. 信息技术, 2023, 47(7): 125-130, 135. |
LU Z J, JIANG L, LI D W, et al. Research on scheduling model of new energy storage system based on whale algorithm[J]. Information Technology, 2023, 47(7): 125-130, 135. | |
30 | 任永峰, 薛宇, 云平平, 等. 马尔可夫预测的多目标优化储能系统平抑风电场功率波动[J]. 电力系统自动化, 2020, 44(6): 67-74. |
REN Y F, XUE Y, YUN P P, et al. Multi-objective optimization of energy storage system with Markov prediction for power fluctuation suppression of wind farm[J]. Automation of Electric Power Systems, 2020, 44(6): 67-74. | |
31 | 薛艳冰, 马大炜, 王烈. 列车牵引能耗计算方法[J]. 中国铁道科学, 2007, 28(3): 84-87. |
XUE Y B, MA D W, WANG L. Calculation method of energy consumption in train traction[J]. China Railway Science, 2007, 28(3): 84-87. | |
32 | 中华人民共和国铁道部. 列车牵引计算规程: TB/T 1407—1998[S]. 北京: 中国铁道出版社, 1999. |
33 | WADA N, MATSUI Y. Driving force control for a vehicle considering slip ratio limitation[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 297-302. |
34 | 余志生. 汽车理论[M]. 5版. 北京: 机械工业出版社, 2009. |
35 | 河北省发展和改革委员会关于明确居民峰谷分时电价政策的通知[EB/OL]. (2022-12-06)[2023-01-05]. https://info.hebei.gov.cn/hbszfxxgk/329975/329988/330035/6852718/7049247/index.html?eqid=9b5c7818000111990000000564268a |
[1] | Du JIN, Guangchen LIU, Bowen SUN, Tianyuan HUANG, Jianwei ZHANG, Guizhen TIAN, Lili JING. Primary frequency modulation control strategy for flywheel energy storage counting and wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1911-1920. |
[2] | Jingye ZHANG, Yuxin LIN, Qingquan QIU, Liye XIAO. Gravity energy storage technology based on slopes and mountains [J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. |
[3] | Qingquan QIU, Xiaoyue LUO, Yuxin LIN, Qingshan WANG, Yan LI, Zipan NIE, Jingye ZHANG, Liye XIAO. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. |
[4] | Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. |
[5] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[6] | Su WANG, Liye XIAO, Wenbing TANG, Jingye ZHANG, Qingquan QIU, Wenyong GUO, Dong ZHANG. Review of new gravity energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. |
[7] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[8] | MI Zengqiang1, BAI Jun1, LIU Liqing1, FAN Weidong2, YANG Zaimin2. Research on regulation strategy of storage-based wind farm after black-start of thermal power unit [J]. Energy Storage Science and Technology, 2017, 6(1): 147-153. |
[9] | ZHU Zhangtao1, CHEN Haojie2, DAI Junjie1, LI Weibin1, LI Xue2 . Probabilistic load flow calculation of distribution network with wind power and electric vehicles based on space transform#br# [J]. Energy Storage Science and Technology, 2017, 6(1): 127-134. |
[10] | ZHANG Jing, LI Daixin. Current application situation and development prospect of physical energy storage technologies [J]. Energy Storage Science and Technology, 2015, 4(2): 153-157. |
[11] | REN Hui, FAN Wenhui, MI Zengqiang. A review on the design and control strategy of energy storage system in wind power application [J]. Energy Storage Science and Technology, 2013, 2(5): 460-467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||