Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 255-268.doi: 10.19799/j.cnki.2095-4239.2024.0623
• Energy Storage System and Engineering • Previous Articles Next Articles
Wenju YAN1(), Yang WANG1, Xinzhu SUN1, Hao CHEN1(
), Qing WANG2
Received:
2024-06-23
Revised:
2024-09-23
Online:
2025-01-28
Published:
2025-02-25
Contact:
Hao CHEN
E-mail:yanwenju09@126.com;hchen@cumt.edu.cn
CLC Number:
Wenju YAN, Yang WANG, Xinzhu SUN, Hao CHEN, Qing WANG. Research progress and key technology of abandoned mine gravity energy storage system based on linear motor[J]. Energy Storage Science and Technology, 2025, 14(1): 255-268.
Table 1
Gravity energy storage research and development project"
研发单位 | 研发方案 | 研发状态 |
---|---|---|
澳大利亚Green Gravity公司 | 涡轮机+多重物 | 2023年建立重力实验室 |
美国Gravity Power公司 | 涡轮机+钢筋活塞 | 2023年提出构想(处在众筹阶段) |
英国Gravitricity公司 | 多卷扬提升机+多重物 | 2021年成功建造一个250 kW的示范平台 |
中电工程及华北电力设计院 | 重力轮机+多重物+轨道输送系统 | 2024年开始建设 |
中国天楹及瑞士Energy Vault公司 | 地面构筑物+多重物 | 2023年9月如东100 MWh项目成功封顶并进入最终调试阶段 |
1 | 曹恩惠, 费心懿. 中国天楹入局新能源 欲凭重力储能"撬动"千亿投资[N]. 21世纪经济报道, 2024-04-05(10). |
CAO E H, FEI X Y. China Tianying enters new energy industry, wants to pry hundreds of billions of investment with gravity energy storage[N]. 21st Century Business Herald, 2024-04-05(10). | |
2 | 王连平, 汤晓明. 一种轨道滑动式重力储能装置: CN220890420U[P]. 2024-05-03. |
3 | 吕艳玲, 周冲, 刘端曾, 等. 一种基于重力储能系统的新型风力发电系统: CN115653836A[P]. 2023-01-31. |
4 | 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789. |
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789. | |
5 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021. 0590. |
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590. | |
6 | YANG Q G, LIU Q J, FU Q, et al. Smart microgrid construction in abandoned mines based on gravity energy storage[J]. Heliyon, 2023, 9(11): e21481. DOI: 10.1016/j.heliyon.2023.e21481. |
7 | 张品, 姚丽英, 陈吉顺, 等. 废弃矿井重力储能现状分析及构想[J]. 内蒙古煤炭经济, 2024(3): 9-11. DOI: 10.13487/j.cnki.imce.024755. |
ZHANG P, YAO L Y, CHEN J S, et al. Analysis and conception of gravity energy storage in abandoned mines[J]. Inner Mongolia Coal Economy, 2024(3): 9-11. DOI: 10.13487/j.cnki.imce.024755. | |
8 | MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. DOI: 10.1016/j.apenergy. 2019.01.226. |
9 | 徐焘. 基于重力储能的风光储多能源混合系统容量配置研究[D]. 武汉: 武汉理工大学, 2021. DOI: 10.27381/d.cnki.gwlgu. 2021.000439. |
XU T. Study on capacity allocation of wind-solar energy storage multi-energy hybrid system based on gravity energy storage[D]. Wuhan: Wuhan University of Technology, 2021. DOI: 10.27381/d.cnki.gwlgu.2021.000439. | |
10 | BOTHA C D, KAMPER M J. Capability study of dry gravity energy storage[J]. Journal of Energy Storage, 2019, 23: 159-174. DOI: 10.1016/j.est.2019.03.015. |
11 | TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: 105226. DOI: 10.1016/j.est.2022.105226. |
12 | TONG W X, LU Z G, CHEN Y B, et al. Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants[J]. Energy, 2024, 295: 131047. DOI: 10.1016/j.energy.2024.131047. |
13 | LU Q F, MEI W H. Recent development of linear machine topologies and applications[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 65-72. DOI: 10.23919/TEMS.2018.8326452. |
14 | 武锐, 董蒙恩, 么冠博. 直线电机综述[C]//2023 湖北省机电工程学会.湖北襄阳, 2023. |
WU R, MENG M E. ME G B. Overview of linear motors[C]//Hubei Mechanical and Electrical Engineering Society, 2023. Xiangyang, Hubei, 2023. | |
15 | 王宇. 长初级双边直线感应电机性能优化与温度场分析[D]. 北京: 北京交通大学, 2023. |
WANG Y. Performance optimization and temperature field analysis of long primary bilateral linear induction motor[D]. Beijing: Beijing Jiaotong University, 2023. | |
16 | 马建宇, 张博. 轨道交通用直线感应电机法向力分析[C]//2023第20届沈阳科学学术年会, 辽宁沈阳, 2023. |
MA J Y, ZHANG B. Normal force analysis of linear induction motors for rail traffic[C]//Proceedings of the 20th Annual Shenyang Science, 2023. Shenyang, Liaoning, 2023. | |
17 | 陈正浩. 电动汽车开关磁阻电机宽转速范围驱动系统研究[D]. 南昌: 南昌大学, 2023. DOI: 10.27232/d.cnki.gnchu.2023.004076. |
CHEN Z H. Research on wide speed range drive system of switched reluctance motor for electric vehicle[D]. Nanchang: Nanchang University, 2023. DOI: 10.27232/d.cnki.gnchu. 2023.004076. | |
18 | 易骁建.长轨道大推力模块化动子直线磁阻电机设计及控制研究[D]. 济南: 山东大学, 2022. |
YI X J. Design and control research of linear switched reluctance motor with passive segmental mover for long orbit and high thrust[D]. Jinan: Shandong University, 2022. | |
19 | 关名赫, 董婷, 冯威. 机床进给永磁直线电机整机系统振动分析[J]. 微特电机, 2023, 51(7): 8-13. DOI: 10.20026/j.cnki.ssemj. 2023.0092. |
GUAN M H, DONG T, FENG W. Vibration analysis method of machine tool feed permanent magnet linear motor[J]. Small & Special Electrical Machines, 2023, 51(7): 8-13. DOI: 10.20026/j.cnki.ssemj.2023.0092. | |
20 | 赵文敏. 模块化定子开关磁阻直线电机结构设计与优化研究[D]. 徐州: 中国矿业大学, 2021. DOI: 10.27623/d.cnki.gzkyu. 2021.001632. |
ZHAO W M. Structural design and optimization of modular stator switched reluctance linear motor[D]. Xuzhou: China University of Mining and Technology, 2021. DOI: 10.27623/d.cnki.gzkyu. 2021.001632. | |
21 | 赵玫, 左思承, 魏尧, 等. 横向磁通永磁直线电机结构及其关键问题综述[J]. 中国电机工程学报, 2021, 41(22): 7806-7821. DOI: 10.13334/j.0258-8013.pcsee.202380. |
ZHAO M, ZUO S C, WEI Y, et al. Overview of structure and key problems for transverse flux permanent magnet linear machine[J]. Proceedings of the CSEE, 2021, 41(22): 7806-7821. DOI: 10.13334/j.0258-8013.pcsee.202380. | |
22 | 马伟明, 王东, 程思为, 等. 高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035. DOI: 10.13334/j.0258-8013.pcsee.2016.08.001. |
MA W M, WANG D, CHENG S W, et al. Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE, 2016, 36(8): 2025-2035. DOI: 10.13334/j.0258-8013.pcsee. 2016.08.001. | |
23 | 党明辉. 基于DSP的永磁同步直线电机控制系统的研究[D]. 杭州: 浙江理工大学, 2015. |
DANG M H. Research on control system of permanent magnet synchronous linear motor based on DSP[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. | |
24 | 葛健, 宫逸凡, 徐伟, 等. 基于在线参数辨识及自适应谐波提取滤波器的改进型直线振荡电机无位置传感器控制[J]. 电工技术学报, 2024, 39(22): 7099-7110. DOI: 10.19595/j.cnki.1000-6753.tces. 231617. |
GE J, GONG Y F, XU W, et al. Improved sensorless control of linear oscillatory machine based on online parameter identification and adaptive harmonic extraction filter[J]. Transactions of China Electrotechnical Society, 2024, 39(22): 7099-7110. DOI: 10.19595/j.cnki.1000-6753.tces.231617. | |
25 | 刘通, 尹忠刚, 白聪, 等. 基于扰动补偿磁链观测器的永磁同步直线电机无位置传感器控制[J]. 电气传动, 2023, 53(12): 16-24. DOI: 10.19457/j.1001-2095.dqcd25169. |
LIU T, YIN Z G, BAI C, et al. Permanent magnet synchronous linear motor based on disturbance compensated flux observer sensorless control[J]. Electric Drive, 2023, 53(12): 16-24. DOI: 10.19457/j.1001-2095.dqcd25169. | |
26 | 闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井用直线电机重力储能装置及其多储能块协同控制方法: CN117639015A[P]. 2024-03-01. |
27 | NIU F, SUN K J, HUANG S P, et al. A review on multimotor synchronous control methods[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 22-33. DOI: 10.1109/TTE.2022.3168647. |
28 | SUN G W, MAO Y, LI X G, et al. Dual-motor master-slave cross-coupling synchronization control of winch considering parameters variations[C]//IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. October 18-21, 2020, Singapore. IEEE, 2020: 199-204. DOI: 10.1109/IECON43393. 2020.9254810. |
29 | KOREN Y. Cross-coupled biaxial computer control for manufacturing systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1980, 102(4): 265-272. DOI: 10.1115/1.3149612. |
30 | 叶宇豪, 彭飞, 黄允凯. 多电机同步运动控制技术综述[J]. 电工技术学报, 2021, 36(14): 2922-2935. DOI: 10.19595/j.cnki.1000-6753.tces.200343. |
YE Y H, PENG F, HUANG Y K. Overview of multi-motor synchronous motion control technology[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 2922-2935. DOI: 10. 19595/j.cnki.1000-6753.tces.200343. | |
31 | SHI T N, LIU H, GENG Q, et al. Improved relative coupling control structure for multi-motor speed synchronous driving system[J]. IET Electric Power Applications, 2016, 10(6): 451-457. DOI: 10.1049/iet-epa.2015.0515. |
32 | 张磊, 鲍久圣, 郝建伟, 等. 永磁直驱带式输送机模糊自抗扰偏差耦合多电机控制策略[J]. 中国机械工程, 2024, 35(11): 2071-2081. |
ZHANG L, BAO J S, HAO J W, et al. Fuzzy active disturbance rejection deviation coupled multi motor control strategy for permanent magnet direct driving belt conveyor[J]. China Mechanical Engineering, 2024, 35(11): 2071-2081. | |
33 | GONG C, LI Y R, ZARGARI N R. An overview of advancements in multimotor drives: Structural diversity, advanced control, specific technical challenges, and solutions[J]. Proceedings of the IEEE, 2024, 112(3): 184-209. DOI: 10.1109/JPROC. 2024. 3387061. |
[1] | Dameng LIU, Xuepeng MOU, Bohao SHI, Julong CHEN, Bin WANG, Chen LUO, Chengjun ZHONG, Sizhe CHEN. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. |
[2] | Zheng LI, Julong CHEN, Wenlin LI, Yu ZHANG, Jierui YANG, Sizhe CHEN. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. |
[3] | Yahui NIE, Xuezhi ZHOU, Dingzhang GUO, Yujie XU, Haisheng CHEN. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1900-1910. |
[4] | Jingye ZHANG, Yuxin LIN, Qingquan QIU, Liye XIAO. Gravity energy storage technology based on slopes and mountains [J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. |
[5] | Qingquan QIU, Xiaoyue LUO, Yuxin LIN, Qingshan WANG, Yan LI, Zipan NIE, Jingye ZHANG, Liye XIAO. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. |
[6] | Rui ZHOU, Jianfeng HONG, Junci CAO, Wei QIN, Zhuoyue ZHAO. Research on power generation efficiency and stabilization strategies for vertical gravity energy storage [J]. Energy Storage Science and Technology, 2024, 13(10): 3556-3565. |
[7] | Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. |
[8] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[9] | FU Hao, JIANG Tong, CUI Yan, QUAN Chao. An operation control strategy for a virtual pumped storage system based on a linear motor [J]. Energy Storage Science and Technology, 2019, 8(1): 98-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||