Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 924-933.doi: 10.19799/j.cnki.2095-4239.2023.0667
• Energy Storage System and Engineering • Previous Articles Next Articles
Jingye ZHANG1,2,3(), Yuxin LIN1,2,3, Qingquan QIU1,2,3, Liye XIAO1,2,3()
Received:
2023-09-26
Revised:
2023-10-03
Online:
2024-03-28
Published:
2024-03-28
Contact:
Liye XIAO
E-mail:jyzhang@mail.iee.ac.cn;xiao@mail.iee.ac.cn
CLC Number:
Jingye ZHANG, Yuxin LIN, Qingquan QIU, Liye XIAO. Gravity energy storage technology based on slopes and mountains[J]. Energy Storage Science and Technology, 2024, 13(3): 924-933.
Table 1
Comparison of advantages and disadvantages of different technologies for slope gravity energy storage based on slopes and mountains"
技术模式 | 优势 | 劣势 | 转换效率 | 选址要求 | |
---|---|---|---|---|---|
抽水蓄能 | 技术成熟、容量大、应用广泛 | 选址要求高,可利用资源不足 | 70%~86% | 上下库落差200米以上,有稳定水源[ | |
斜坡轨道技术 | 单体动力驱动 | 单体载重量大、功率和容量大、运行灵活 | 重物载体造价高、山体坡度小,重物堆场占地大,功率间歇 | 78% | 坡度在17°以内的山体、矿井巷道等斜坡[ |
卷扬机驱动 | 单体载重量大、功率和容量大,重物成本较低,安全性高 | 功率间断、不连续,占地面积大 | 70%~90% | 矿井巷道、山体斜坡,坡度6°~25°[ | |
斜坡缆车式 | 可扩展性强,重物成本较低,循环运行,功率连续不间断 | 架空缆索弧垂大,单体载重小,功率低,容量小 | 70%~85% | 山体斜坡,对坡度没有限制[ |
1 | 白旭. 中国海上风电发展现状与展望[J]. 船舶工程, 2021, 43(10): 12-15. |
BAI X. Development status and prospect of offshore wind power in China[J]. Ship Engineering, 2021, 43(10): 12-15. | |
2 | 林玉鑫, 张京业. 海上风电的发展现状与前景展望[J]. 分布式能源, 2023, 8(2): 1-10. |
LIN Y X, ZHANG J Y. Development status and prospect of offshore wind power[J]. Distributed Energy, 2023, 8(2): 1-10. | |
3 | 夏焱, 万继方, 李景翠, 等. 重力储能技术研究进展[J]. 新能源进展, 2022, 10(3): 258-264. |
XIA Y, WAN J F, LI J C, et al. Research progress of gravity energy storage technology[J]. Advances in New and Renewable Energy, 2022, 10(3): 258-264. | |
4 | 毕凯, 宋明中, 林玉杰, 等. 基于光伏电站的压缩空气储能研究[J]. 中国科技信息, 2022(21): 62-63. |
BI K, SONG M Z, LIN Y J, et al. Research on compressed air energy storage based on photovoltaic power station[J]. China Science and Technology Information, 2022(21): 62-63. | |
5 | 付凌云, 张韩, 郭继强, 等. 新时代下新能源储能技术创新发展问题研究[J]. 中国设备工程, 2022(20): 249-251. |
FU L Y, ZHANG H, GUO J Q, et al. Research on the innovation and development of new energy storage technology in the new era[J]. China Plant Engineering, 2022(20): 249-251. | |
6 | 国家电网公司"电网新技术前景研究"项目咨询组, 王松岑, 来小康, 等. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8, 30. |
Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems, WANG S C, LAI X K, et al. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8, 30. | |
7 | TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: 105226. |
8 | 刘智洋, 宋杭选, 方宽, 等. 依托重力储能的高寒地区风-储联合发电系统容量优化[J]. 黑龙江电力, 2023, 45(1): 30-35. |
LIU Z Y, SONG H X, FANG K, et al. Capacity optimization of wind-storage combined power generation system in alpine region based on gravity energy storage[J]. Heilongjiang Electric Power, 2023, 45(1): 30-35. | |
9 | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7): 17-23. |
TONG J L, HONG Q, LYU H K, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7): 17-23. | |
10 | BERRADA A, EMRANI A, AMEUR A. Life-cycle assessment of gravity energy storage systems for large-scale application[J]. Journal of Energy Storage, 2021, 40: 102825. |
11 | MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. |
12 | 曹慧利. 新能源发电侧储能技术和运用分析[J]. 电气技术与经济, 2022(5): 46-48. |
CAO H L. Energy storage technology and application analysis of new energy generation side[J]. Electrical Equipment and Economy, 2022(5): 46-48. | |
13 | 程华, 徐政. 分布式发电中的储能技术[J]. 高压电器, 2003, 39(3): 53-56. |
CHENG H, XU Z. Energy storage for use with distribution power generation[J]. High Voltage Apparatus, 2003, 39(3): 53-56. | |
14 | 程时杰, 文劲宇, 孙海顺. 储能技术及其在现代电力系统中的应用[J]. 电气应用, 2005, 24(4): 1-2, 4-6, 8-19. |
CHENG S J, WEN J Y, SUN H S. Application of power energy storage techniques in the modern power system[J]. Electrotechnical Journal, 2005, 24(4): 1-2, 4-6, 8-19. | |
15 | 曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙: 长沙理工大学, 2016. |
ZENG R. Research on mountain energy technology and its capacity configuration with wind farm[D]. Changsha: Changsha University of Science & Technology, 2016. | |
16 | 尤超, 赵威, 胡开元, 等. 一种提高重力储能发电系统效率的方法: CN115653855A[P]. 2023-01-31. |
YOU C, ZHAO W, HU K Y, et al. Method for improving efficiency of gravity energy storage power generation system: CN115653855A[P]. 2023-01-31. | |
17 | 邱清泉, 肖立业, 聂子攀, 等. 一种基于多重物高效提升和转移的重力储能系统: CN114151296A[P]. 2022-03-08. |
QIU Q Q, XIAO L Y, NIE Z P, et al. Gravity energy storage system based on efficient lifting and transferring of multiple heavy objects: CN114151296A[P]. 2022-03-08. | |
18 | 刘延龙, 陈晓光, 徐明宇, 等. 一种基于能量转换的山体重力储能系统斜坡运行控制方法: CN115653856A[P]. 2023-01-31. |
LIU Y L, CHEN X G, XU M Y, et al. Mountain gravity energy storage system slope operation control method based on energy conversion: CN115653856A[P]. 2023-01-31. | |
19 | 肖立业, 张京业, 聂子攀, 等. 地下储能工程[J]. 电工电能新技术, 2022, 41(2): 1-9. |
XIAO L Y, ZHANG J Y, NIE Z P, et al. Underground energy storage engineering[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(2): 1-9. | |
20 | 赵永明, 邱清泉, 聂子攀, 等. 重力/飞轮综合储能电机变流并网系统设计及运行特性[J]. 储能科学与技术, 2022,11(12): 3895-3905. |
ZHAO Y M, QIU Q Q, NIE Z P,et al. Design and operation characteristics of converter grid-connected system of gravity/flywheel integrated energy storage motor [J]. Energy Storage Science and Technology, 2022,11(12): 3895-3905. | |
21 | 杨于驰, 张媛, 莫堃. 新型储能技术发展与展望[J]. 中国重型装备, 2022(4): 27-32. |
YANG Y C, ZHANG Y, MO K. Development and outlook of new technologies for energy storage[J]. China Heavy Equipment, 2022(4): 27-32. | |
22 | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. |
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. | |
23 | 焦汉森. 大规模储能用二次电池的发展现状[J]. 电池工业, 2023, 27(3): 148-155. |
JIAO H S. A review of the rechargeable batteries for large-scale energy storage[J]. Chinese Battery Industry, 2023, 27(3): 148-155. | |
24 | 杨闯, 朱曙荣, 边技超, 等. 新型物理储能技术路线分析[J]. 电站辅机, 2023, 44(2): 10-15. |
YANG C, ZHU S R, BIAN J C, et al. Analysis for new physical energy storage technology route[J]. Power Station Auxiliary Equipment, 2023, 44(2): 10-15. | |
25 | 陈海生, 凌浩恕, 徐玉杰. 能源革命中的物理储能技术[J]. 中国科学院院刊, 2019, 34(4): 450-459. |
CHEN H S, LING H S, XU Y J. Physical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 450-459. | |
26 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
27 | 赫文豪, 李懂文, 杨东杰, 等. 新型重力储能技术研究现状与发展趋势[J]. 大学物理实验, 2022, 35(5): 1-7. |
HE W H, LI D W, YANG D J, et al. Research and development of novel gravity energy storage technologies[J]. Physical Experiment of College, 2022, 35(5): 1-7. | |
28 | 谭国俊, 冯维, 杨波, 等. 高效重力储能装置: CN106704121A[P]. 2017-05-24. |
TAN G J, FENG W, YANG B, et al. Efficient gravity energy storage device: CN106704121A[P]. 2017-05-24. | |
29 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11(5): 1575-1582. |
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. | |
30 | 罗振军, 黄田, 梅江平, 等. 依托山体的重力储能系统: CN103867408A[P]. 2014-06-18. |
LUO Z J, HUANG T, MEI J P, et al. Gravity energy storing system relying on massif: CN103867408A[P]. 2014-06-18. | |
31 | 肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24. |
XIAO L Y, SHI L M, WEI T Z, et al. Railway track carrier vehicle energy storage system: CN108437808A[P]. 2018-08-24. | |
32 | 郭高朋, 查鲲鹏, 周亮, 等. 一种基于传送链的高效重力储能系统: CN112096580A[P]. 2020-12-18. |
GUO G P, ZHA K P, ZHOU L, et al. Efficient gravity energy storage system based on conveying chain: CN112096580A[P]. 2020-12-18. | |
33 | 陈云良, 刘旻, 凡家异, 等. 重力储能发电现状、技术构想及关键问题[J]. 工程科学与技术, 2022, 54(1): 97-105. |
CHEN Y L, LIU M, FAN J Y, et al. Present situation, technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences, 2022, 54(1): 97-105. | |
34 | HUNT J D, ZAKERI B, FALCHETTA G, et al. Mountain gravity energy storage: A new solution for closing the gap between existing short-and long-term storage technologies[J]. Energy, 2020, 190: 116419. |
35 | 肖立业, 王粟, 张京业, 等. 依托轨道和缆车运沙的重力储能系统: CN113895467B[P]. 2023-04-07. |
XIAO L Y, WANG S, ZHANG J Y, et al. Gravity energy storage system for transporting sand by means of track and cable car: CN113895467B[P]. 2023-04-07. |
[1] | Qingquan QIU, Xiaoyue LUO, Yuxin LIN, Qingshan WANG, Yan LI, Zipan NIE, Jingye ZHANG, Liye XIAO. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. |
[2] | Tianchen LI, Jianzheng YIN, Dawei ZHANG, Xiaoheng LIU. Research on renewable energy grid integration strategy based on hydropower station energy storage technology [J]. Energy Storage Science and Technology, 2024, 13(2): 677-679. |
[3] | Min PANG. Research on building energy planning and utilization based on the coupling of renewable energy and energy storage [J]. Energy Storage Science and Technology, 2024, 13(2): 586-588. |
[4] | Yun WANG, Fei MENG, Chao ZHANG, Tao LI, Bo TIAN, Jiangpeng LI, Haidong CHEN, Zhihua ZHANG. Effect of ammonia decomposition hydrogen production and energy storage system capacity on performance of power system [J]. Energy Storage Science and Technology, 2024, 13(2): 589-597. |
[5] | Huabang ZHANG, Yue CHEN, Qin LI, Hongqiang WANG, Guofeng QIN, Qiang WU, Qingyu LI. Research on energy management strategy for a hybrid power system of ship's aluminum-air battery and lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(9): 2871-2880. |
[6] | Wei ZHANG, Shigang LUO, Jie TENG, Yongli BAI. Joint planning of renewable energy and storage considering thermostatically controlled loads aggregation regulation [J]. Energy Storage Science and Technology, 2023, 12(6): 1901-1912. |
[7] | Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. |
[8] | Haidong CHEN, Fei MENG, Qing WANG, Feng HOU, Yi WANG, Zhihua ZHANG. Influence of installed capacity of energy storage system and renewable energy power generation on power system performance [J]. Energy Storage Science and Technology, 2023, 12(2): 477-485. |
[9] | Yulei LI, Wei LIU, Binqi DONG, Dingguo XIA. Green hydrogen ammonia synthesis in China under double carbon target:Research on development basis and route [J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. |
[10] | Han JIANG, Xinzhi XU, Zhe LIU, Rui ZHANG, Xu HU. Energy transition and hydrogen development prospects in Saudi Arabia [J]. Energy Storage Science and Technology, 2022, 11(7): 2354-2365. |
[11] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[12] | Han ZHOU, Zhengyu LI, Junhui XU, Liuping CHEN, Linghui GONG. Analyses and prospects for the coupled generation of renewable energy and the salt-cavern hydrogen-storage technology in China [J]. Energy Storage Science and Technology, 2022, 11(12): 4059-4066. |
[13] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[14] | Xiuhui LI, Yan CUI. Optimal allocation of energy storage in renewable energy grid considering the demand of peak and frequency regulation [J]. Energy Storage Science and Technology, 2022, 11(11): 3594-3602. |
[15] | Jian LIU. Economic assessment for energy storage technologies adaptive to variable renewable energy [J]. Energy Storage Science and Technology, 2022, 11(1): 397-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||