Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2761-2771.doi: 10.19799/j.cnki.2095-4239.2024.0211
• Energy Storage System and Engineering • Previous Articles Next Articles
Zheng LI1(), Julong CHEN1, Wenlin LI2(), Yu ZHANG1, Jierui YANG1, Sizhe CHEN2
Received:
2024-03-12
Revised:
2024-04-28
Online:
2024-08-28
Published:
2024-08-15
Contact:
Wenlin LI
E-mail:917471106@qq.com;liwenlinnb@163.com
CLC Number:
Zheng LI, Julong CHEN, Wenlin LI, Yu ZHANG, Jierui YANG, Sizhe CHEN. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage[J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771.
1 | 刘自发, 刘云阳, 王新月, 等. 考虑可再生能源的配电网储能和电动汽车运行优化研究[J]. 中国电机工程学报, 2022, 42(5): 1813-1825. DOI: 10.13334/j.0258-8013.pcsee.202448. |
LIU Z F, LIU Y Y, WANG X Y, et al. Operation schedule optimization of energy storage and electric vehicles in a distribution network with renewable energy sources[J]. Proceedings of the CSEE, 2022, 42(5): 1813-1825. DOI: 10.13334/j.0258-8013.pcsee.202448. | |
2 | 李闯, 孔祥玉, 朱石剑, 等. 能源互联环境下考虑需求响应的区域电网短期负荷预测[J]. 电力系统自动化, 2021, 45(1): 71-78. DOI: 10.7500/AEPS20200428001. |
LI C, KONG X Y, ZHU S J, et al. Short-term load forecasting of regional power grid considering demand response in energy interconnection environment[J]. Automation of Electric Power Systems, 2021, 45(1): 71-78. DOI: 10.7500/AEPS20200428001. | |
3 | 黎淑娟, 李爱魁, 黄际元, 等. 储能在高占比可再生能源系统中的应用及关键技术[J]. 供用电, 2020, 37(2): 3-7, 40. DOI: 10.19421/j.cnki.1006-6357.2020.02.001. |
LI S J, LI A K, HUANG J Y, et al. The application and key technologies of energy storage in high-proportion renewable energy systems[J]. Distribution & Utilization, 2020, 37(2): 3-7, 40. DOI: 10.19421/j.cnki.1006-6357.2020.02.001. | |
4 | 杨军峰, 郑晓雨, 惠东, 等. 储能技术在送端电网中促进新能源消纳的容量需求分析[J]. 储能科学与技术, 2018, 7(4): 698-704. DOI: 10.12028/j.issn.2095-4239.2018.0006. |
YANG J F, ZHENG X Y, HUI D, et al. Capacity demand analysis of energy storage in the sending-side of a power grid for accommodating large-scale renewables[J]. Energy Storage Science and Technology, 2018, 7(4): 698-704. DOI: 10.12028/j.issn.2095-4239.2018.0006. | |
5 | 李建林, 李雅欣, 周喜超. 电网侧储能技术研究综述[J]. 电力建设, 2020, 41(6): 77-84. DOI: 10.12204/j.issn.1000-7229.2020.06.010. |
LI J L, LI Y X, ZHOU X C. Summary of research on grid-side energy storage technology[J]. Electric Power Construction, 2020, 41(6): 77-84. DOI: 10.12204/j.issn.1000-7229.2020.06.010. | |
6 | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239.2023.0296. |
ZAN W D, ZHANG R, DING F. Development and application of electrochemical models for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239.2023.0296. | |
7 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590. |
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590. | |
8 | Advanced rail energy storage (ARES)[EB/OL]. https://aresnorthamerica.com/. |
9 | HUNT J D, ZAKERI B, FALCHETTA G, et al. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies[J]. Energy, 2020, 190: 116419. DOI: 10.1016/j.energy.2019.116419. |
10 | 肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24. |
11 | 张京业, 林玉鑫, 邱清泉, 等. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667. |
ZHANG J Y, LIN Y X, QIU Q Q, et al. Gravity energy storage technology based on slopes and mountains[J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667. | |
12 | LUO Z J, HUANG T, MEI J P, et al. Gravity energy storing system relying on massif: CN103867408A[P]. 2014-06-18. |
13 | PEITZKE W R, BROWN M B. Ridgeline cable drive electric energy storage system: US10069333[P]. 2018-09-04. |
14 | 陈沛, 张新松, 郭晓丽, 等. 考虑AGC指令随机特性的火-储混合电站二次调频研究[J]. 电力系统保护与控制, 2023, 51(12): 168-177. DOI: 10.19783/j.cnki.pspc.221600. |
CHEN P, ZHANG X S, GUO X L, et al. Secondary frequency regulation of a hybrid coal-fired generator and BESS power station considering random characteristics of AGC instructions[J]. Power System Protection and Control, 2023, 51(12): 168-177. DOI: 10.19783/j.cnki.pspc.221600. | |
15 | 韩健民, 薛飞宇, 梁双印, 等. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. DOI: 10.19799/j.cnki.2095-4239.2021.0664. |
HAN J M, XUE F Y, LIANG S Y, et al. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization[J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. DOI: 10.19799/j.cnki.2095-4239.2021.0664. | |
16 | XIE X R, GUO Y H, WANG B, et al. Improving AGC performance of coal-fueled thermal generators using multi-MW scale BESS: A practical application[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1769-1777. DOI: 10.1109/TSG.2016.2599579. |
17 | 邢超, 肖家杰, 李培强, 等. 面向电网二次调频的多类型储能集成控制策略及经济性评估[J]. 储能科学与技术, 2023, 12(10): 3265-3274. DOI: 10.19799/j.cnki.2095-4239.2023.0430. |
XING C, XIAO J J, LI P Q, et al. Integrated control strategy and economic evaluation of multi-type energy storage for power grid secondary frequency modulation[J]. Energy Storage Science and Technology, 2023, 12(10): 3265-3274. DOI: 10.19799/j.cnki.2095-4239.2023.0430. | |
18 | 丁冬, 刘宗歧, 杨水丽, 等. 基于模糊控制的电池储能系统辅助AGC调频方法[J]. 电力系统保护与控制, 2015, 43(8): 81-87. |
DING D, LIU Z Q, YANG S L, et al. Battery energy storage aid automatic generation control for load frequency control based on fuzzy control[J]. Power System Protection and Control, 2015, 43(8): 81-87. | |
19 | 李学峰, 李国庆, 李晓飞, 等. 考虑风电不确定性与电池损耗的储能电站鲁棒规划方法[J]. 电力系统及其自动化学报, 2024, 36(2): 144-151. DOI: 10.19635/j.cnki.csu-epsa.001209. |
LI X F, LI G Q, LI X F, et al. Robust planning method for energy storage station considering wind power uncertainty and battery loss[J]. Proceedings of the CSU-EPSA, 2024, 36(2): 144-151. DOI: 10.19635/j.cnki.csu-epsa.001209. |
[1] | Yahui NIE, Xuezhi ZHOU, Dingzhang GUO, Yujie XU, Haisheng CHEN. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1900-1910. |
[2] | Dongze GUO, Jihong ZHANG, Qingyu WANG, Shuai ZHANG. Hybrid energy storage power allocation strategy for smoothing wind power output fluctuations [J]. Energy Storage Science and Technology, 2024, 13(5): 1564-1573. |
[3] | Ting HE, Junqiang QIAO, Guodong WU. Curtailed power forecasting based on GRU and operation optimization of electric-hydrogen hybrid energy storage system [J]. Energy Storage Science and Technology, 2024, 13(5): 1731-1740. |
[4] | Sha HUANG, Yaxin LI. Analysis of fuel cell hybrid energy storage system based on computer software [J]. Energy Storage Science and Technology, 2024, 13(4): 1350-1352. |
[5] | Qingquan QIU, Xiaoyue LUO, Yuxin LIN, Qingshan WANG, Yan LI, Zipan NIE, Jingye ZHANG, Liye XIAO. Research progress and key technologies in vertical gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. |
[6] | Jingye ZHANG, Yuxin LIN, Qingquan QIU, Liye XIAO. Gravity energy storage technology based on slopes and mountains [J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. |
[7] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[8] | Hongcheng ZHAO, Zaihua LI, Junhong LAI, Yinyu CHEN, Boqi ZHANG, Kanghua GONG, Yi ZENG. Coordinated operation method of RPC-based hybrid energy storage access dual-mode traction power supply system [J]. Energy Storage Science and Technology, 2023, 12(9): 2862-2870. |
[9] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[10] | Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. |
[11] | Jie SONG, Linxiao GENG, Yongfu SANG, Rongbin WEN, Peng SUN, Linjuan GONG. Study on primary frequency modulation capacity planning of thermal power unit assisted by hybrid energy storage based on EMD decomposition [J]. Energy Storage Science and Technology, 2023, 12(2): 496-503. |
[12] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[13] | Zhenbo WEI, Yixin YAO, Wenwen ZHANG, Zihang LUO, Yinjiang LI, Yujie REN. Capacity-based optimal configuration of microgrid hybrid energy-storage system with pumped storage based on CEEMDAN [J]. Energy Storage Science and Technology, 2023, 12(11): 3414-3424. |
[14] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[15] | Bin GUO, Jie XING, Fei YAO, Xiaomin JING. Optimal configuration of user-side hybrid energy storage based on bi-level programming model [J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||