Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 598-607.doi: 10.19799/j.cnki.2095-4239.2023.0570
• Energy Storage System and Engineering • Previous Articles Next Articles
Jinya ZHANG(), Wenbo ZHOU, Ziyiyi CHENG
Received:
2023-09-13
Revised:
2023-10-02
Online:
2024-02-28
Published:
2024-03-01
Contact:
Jinya ZHANG
E-mail:zhjinya@163.com
CLC Number:
Jinya ZHANG, Wenbo ZHOU, Ziyiyi CHENG. Performance comparison of metal foam and fin phase-change energy storage system based on LBM[J]. Energy Storage Science and Technology, 2024, 13(2): 598-607.
1 | LI X Y, NIU C, LI X X, et al. Pore-scale investigation on effects of void cavity distribution on melting of composite phase change materials[J]. Applied Energy, 2020, 275: 115302. |
2 | 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. |
LIU W, LI Z M, LIU M Y, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. | |
3 | 李椿, 王志华, 王建春, 等. 壳管式相变储能换热器性能研究与场协同效应分析[J]. 太阳能学报, 2020, 41(3): 226-233. |
LI C, WANG Z H, WANG J C, et al. Performance study and field synergy analysis of shell and tube phase change energy storage heat exchanger[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 226-233. | |
4 | 肖俊兵, 邹博, 庄依杰, 等. 泡沫金属复合相变体系导热性能研究及应用[J]. 中南大学学报(自然科学版), 2022, 53(12): 4687-4699. |
XIAO J B, ZOU B, ZHUANG Y J, et al. Research and application on thermal conduction performance of metal foam composite phase change system[J]. Journal of Central South University (Science and Technology), 2022, 53(12): 4687-4699. | |
5 | 陈红兵, 高雪宁, 刘涛, 等. 应用石蜡/GO复合相变材料的太阳能PV/T系统性能[J]. 储能科学与技术, 2023, 12(3): 661-668. |
CHEN H B, GAO X N, LIU T, et al. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material[J]. Energy Storage Science and Technology, 2023, 12(3): 661-668. | |
6 | 田伟, 梁晓光, 党硕, 等. 金属泡沫-翅片复合结构强化相变蓄热的实验研究[J]. 西安交通大学学报, 2021, 55(11): 17-24. |
TIAN W, LIANG X G, DANG S, et al. Visualized experimental study on the phase change heat storage enhanced with metal foam[J]. Journal of Xi'an Jiaotong University, 2021, 55(11): 17-24. | |
7 | REN Q L, XU H T, LUO Z Q. PCM charging process accelerated with combination of optimized triangle fins and nanoparticles[J]. International Journal of Thermal Sciences, 2019, 140: 466-479. |
8 | ZHU F, ZHANG C, GONG X L. Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite[J]. Applied Thermal Engineering, 2016, 109: 373-383. |
9 | TIAN L L, LIU X, CHEN S, et al. Effect of fin material on PCM melting in a rectangular enclosure[J]. Applied Thermal Engineering, 2020, 167: 114764. |
10 | 张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. | |
11 | 刘立君, 宁雅倩, 李晓庆, 等. 偏心分形翅片管相变储热单元性能强化模拟[J]. 储能科学与技术, 2022, 11(11): 3681-3687. |
LIU L J, NING Y Q, LI X Q, et al. Performance enhancement simulation of eccentric fractal-fin tube phase change heat storage unit[J]. Energy Storage Science and Technology, 2022, 11(11): 3681-3687. | |
12 | MANCIN S, DIANI A, DORETTI L, et al. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams[J]. International Journal of Thermal Sciences, 2015, 90: 79-89. |
13 | DING C, ZHANG C, MA L, et al. Numerical investigation on melting behaviour of phase change materials/metal foam composites under hypergravity conditions[J]. Applied Thermal Engineering, 2022, 207: 118153. |
14 | 崔婷婷, 王燕. 基于LBM的多孔介质无机复合相变材料储能特性[J]. 储能科学与技术, 2023, 12(1): 61-68. |
CUI T T, WANG Y. Energy storage characteristics of porous inorganic composite phase-change materials based on the Lattice Boltzmann Method[J]. Energy Storage Science and Technology, 2023, 12(1): 61-68. | |
15 | WANG M R, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(3 Pt 2): 036702. |
16 | DSILVA WINFRED RUFUSS D, SUGANTHI L, INIYAN S, et al. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity[J]. Journal of Cleaner Production, 2018, 192: 9-29. |
17 | JESUMATHY S, UDAYAKUMAR M, SURESH S. Experimental study of enhanced heat transfer by addition of CuO nanoparticle[J]. Heat and Mass Transfer, 2012, 48(6): 965-978. |
18 | 陈俊旗, 曹世豪. 自然对流对方腔内相变石蜡熔化蓄热的影响[J]. 科学技术与工程, 2022, 22(24): 10586-10593. |
CHEN J Q, CAO S H. Effect of natural convection on melting heat storage of phase change paraffin in a square cavity[J]. Science Technology and Engineering, 2022, 22(24): 10586-10593. | |
19 | CHATTERJEE D, CHAKRABORTY S. An enthalpy-based lattice Boltzmann model for diffusion dominated solid-liquid phase transformation[J]. Physics Letters A, 2005, 341(1/2/3/4): 320-330. |
20 | HUANG R Z, WU H Y, CHENG P. A new lattice Boltzmann model for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2013, 59: 295-301. |
21 | NOBLE D R, TORCZYNSKI J R. A lattice-Boltzmann method for partially saturated computational cells[J]. International Journal of Modern Physics C, 1998, 9(8): 1189-1201. |
22 | JIN H Q, FAN L W, LIU M J, et al. A pore-scale visualized study of melting heat transfer of a paraffin wax saturated in a copper foam: Effects of the pore size[J]. International Journal of Heat and Mass Transfer, 2017, 112: 39-44. |
[1] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[2] | Yibin LUO, Wenchao DUAN, Jinghao YAN, Jie LI, Xiaoqin SUN, Shuguang LIAO. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit [J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. |
[3] | Feng LI, Yuanwei LU, Yanquan WANG, Yancheng MA, Yuting WU. Effect of airfoil structure on flow and heat transfer characteristics of printed circuit heat exchanger [J]. Energy Storage Science and Technology, 2024, 13(2): 416-424. |
[4] | Yu JIAN, Baoming CHEN, Pengzhen ZHU, Kun LI. Study on phase change heat transfer characteristics of paraffin square cavity with gradient pore density skeleton [J]. Energy Storage Science and Technology, 2023, 12(6): 1968-1980. |
[5] | Xiaoqing LI, Yuze FAN, Xiaoyan LIU. Investigation of the effect of skeleton structure on the thermal energy storage performance of solid-liquid phase change using LBM [J]. Energy Storage Science and Technology, 2023, 12(6): 1774-1783. |
[6] | Zezheng WANG, Wenhao QU, Yajun WANG, Run QIN, Yibing LIU. Simulation and stress analysis of large capacity composite flywheel rotor [J]. Energy Storage Science and Technology, 2023, 12(3): 669-675. |
[7] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[8] | Yang CAI, Zeyu ZHOU, Xiaoyan HUANG, Jiehong DENG, Fuyun ZHAO. Performance analysis of an environmental temperature-difference energy harvest device based on fin structure optimization [J]. Energy Storage Science and Technology, 2023, 12(12): 3780-3788. |
[9] | Haodong ZHAO, Furen ZHANG, Bolin DU, Xue LI, Zhikai HUANG, Shizheng SUN. Strengthening the heat dissipation performance of liquid cooling plate by adding a diversion hole and a finned channel wall [J]. Energy Storage Science and Technology, 2023, 12(10): 3108-3119. |
[10] | Tingting CUI, Yan WANG. Energy storage characteristics of porous inorganic composite phase-change materials based on the Lattice Boltzmann Method [J]. Energy Storage Science and Technology, 2023, 12(1): 61-68. |
[11] | Qianjun MAO, Yuanyuan ZHU. Study on heat storage performance of novel bifurcated fins to strengthen shell-and-tube energy storage tanks [J]. Energy Storage Science and Technology, 2023, 12(1): 69-78. |
[12] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[13] | ZHANG Hong, ZHANG Yang, ZHAO Yao, WANG Jiulin. Research progress of sulfur cathode in solid-solid conversion reaction [J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933. |
[14] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[15] | Yongxue ZHANG, Zixi WANG, Bohui LU, Shengqi YANG, Hongyu ZHAO. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins [J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||