Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 61-68.doi: 10.19799/j.cnki.2095-4239.2022.0427
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2022-07-29
Revised:
2022-08-30
Online:
2023-01-05
Published:
2023-02-08
Contact:
Yan WANG
E-mail:1834106811@qq.com;wemma7@gmail.com
CLC Number:
Tingting CUI, Yan WANG. Energy storage characteristics of porous inorganic composite phase-change materials based on the Lattice Boltzmann Method[J]. Energy Storage Science and Technology, 2023, 12(1): 61-68.
1 | REN M, LU P T, LIU X R, et al. Decarbonizing China's iron and steel industry from the supply and demand sides for carbon neutrality[J]. Applied Energy, 2021, 298: doi: 10.1016/j.apenergy.2021.117209. |
2 | 舒钊, 钟珂, 肖鑫, 等. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
SHU Z, ZHONG K, XIAO X, et al. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. | |
3 | 徐子杰, 王燕. 多孔基无机复合相变材料的蓄热特性[J]. 储能科学与技术, 2022, 11(10): 3171-3179. |
XU Z J, WANG Y. Thermal storage properties of porous inorganic composite phase change material[J]. Energy Storage Science and Technology, 2022, 11(10): 3171-3179. | |
4 | WU S F, YAN T, KUAI Z H, et al. Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage[J]. Solar Energy, 2020, 205: 474-486. |
5 | FAN R J, ZHENG N B, SUN Z Q. Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules[J]. International Journal of Heat and Mass Transfer, 2021, 166: doi: 10.1016/j.ijheatmasstransfer.2020.120753. |
6 | LI J W, ZHANG H Y. Thermal characteristics of power battery module with composite phase change material and external liquid cooling[J]. International Journal of Heat and Mass Transfer, 2020, 156: doi: 10.1016/j.ijheatmasstransfer.2020.119820. |
7 | BONDAREVA N S, BUONOMO B, MANCA O, et al. Heat transfer inside cooling system based on phase change material with alumina nanoparticles[J]. Applied Thermal Engineering, 2018, 144: 972-981. |
8 | 田伟, 梁晓光, 党硕, 等. 金属泡沫-翅片复合结构强化相变蓄热的实验研究[J]. 西安交通大学学报, 2021, 55(11): 17-24. |
TIAN W, LIANG X G, DANG S, et al. Visualized experimental study on the phase change heat storage enhanced with metal foam[J]. Journal of Xi'an Jiaotong University, 2021, 55(11): 17-24. | |
9 | LI W Q, WAN H, JING T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421. |
10 | WANG Z L, ZHANG H, DOU B L, et al. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials[J]. Applied Thermal Engineering, 2022, 201: doi: 10.1016/j.applthermaleng.2021.117778. |
11 | LIU Q, FENG X B, HE Y L, et al. Three-dimensional multiple-relaxation-time lattice Boltzmann models for single-phase and solid-liquid phase-change heat transfer in porous media at the REV scale[J]. Applied Thermal Engineering, 2019, 152: 319-337. |
12 | 贾兴龙, 陈宝明, 张艳勇, 等. 梯度骨架对固液相变蓄热特性影响研究[J]. 山东建筑大学学报, 2020, 35(5): 56-63. |
JIA X L, CHEN B M, ZHANG Y Y, et al. Study on the effect of gradient skeleton on the heat storage characteristics of solid-liquid phase change[J]. Journal of Shandong Jianzhu University, 2020, 35(5): 56-63. | |
13 | HUO Y T, GUO Y Q, RAO Z H. Investigation on the thermal performance of phase change material/porous medium-based battery thermal management in pore scale[J]. International Journal of Energy Research, 2019, 43(2): 767-778. |
14 | HAN Q, WANG H, YU C, et al. Lattice Boltzmann simulation of melting heat transfer in a composite phase change material[J]. Applied Thermal Engineering, 2020, 176: doi: 10.1016/j.applthermaleng.2020.115423. |
15 | JOURABIAN M, DARZI A A R, TOGHRAIE D, et al. Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 509: 316-335. |
16 | REN Q L, MENG F L, GUO P H. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1214-1228. |
17 | BECKERMANN C, VISKANTA R. Natural convection solid/liquid phase change in porous media[J ]. International Journal of Heat and Mass Transfer, 1988, 31(1): 35-46. |
18 | MENCINGER J. Numerical simulation of melting in two-dimensional cavity using adaptive grid[J]. Journal of Computational Physics, 2004, 198(1): 243-264. |
[1] | Lin LI, Yu WANG, Wenyan QIAN, Dongxu LI. Performance and temperature control effect simulation of fatty acid phase-change energy storage board [J]. Energy Storage Science and Technology, 2023, 12(1): 247-254. |
[2] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[3] | Li SHENG, Xinjie XUE, Yanjun BO, Changying ZHAO. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium [J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. |
[4] | Niangzhi LIN, Chuanchang LI. Phase change materials for energy storage in cold-chain transportation [J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050. |
[5] | Lihui LIU, Yajing MO, Xiaoqin SUN, Jie LI. Thermal storage characteristics and optimization of plate-type phase change energy storage unit [J]. Energy Storage Science and Technology, 2020, 9(6): 1784-1789. |
[6] | Yiqian GAO, Yi LIU, Ling LI. Numerical simulation of natural convection melting inside a triangular cavity using Lattice Boltzmann method [J]. Energy Storage Science and Technology, 2020, 9(6): 1798-1805. |
[7] | WAN Qian, HE Luxi, HE Zhengbin, YI Songlin. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104. |
[8] | ZOU Yong, QIU Rudong, WANG Xia. Simulation study on thermal storage process of paraffin phase change materials [J]. Energy Storage Science and Technology, 2020, 9(1): 101-108. |
[9] | WAN Qian, XIAO Haonan, QIAN Jing, HE Zhengbin, YI Songlin. Influence of iron foam on paraffin phase change heat storage process [J]. Energy Storage Science and Technology, 2020, 9(1): 94-100. |
[10] | XU Guizhi, HU Xiao, JIN Yi, YANG Cenyu, LI Chuan, DING Yulong. Simulation modeling and analysis of a high temperature phase change heat storage and exchange device [J]. Energy Storage Science and Technology, 2019, 8(2): 338-346. |
[11] | ZHANG Jiali, DING Yu, QU Lijie, HE Zhengbin, YI Songlin. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. |
[12] | HU Desheng, ZENG Qi. Numerical simulation and optimization of a heat storage process in a layered regenerator [J]. Energy Storage Science and Technology, 2018, 7(4): 718-725. |
[13] | LIU Peng, GU Xiaobin, QIN Shan. State-of-the-art development of numerical simulations of phase change materials based systems [J]. Energy Storage Science and Technology, 2018, 7(2): 221-231. |
[14] | LI Huixing, CAO Chihong, FENG Guohui, ZHANG Ran, HUANG Kailiang. A numerical study on heat storage water tank containing phase change materials for air source heat pump systems [J]. Energy Storage Science and Technology, 2016, 5(1): 101-105. |
[15] | GUO Chaxiu, LUO Zhijun. Review on effective thermal conductivity of bubble type porous media [J]. Energy Storage Science and Technology, 2013, 2(6): 577-585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||