1 |
ZHAO C Y, JU S H, XUE Y, et al. China's energy transitions for carbon neutrality: Challenges and opportunities[J]. Carbon Neutrality, 2022, 1(1): 7. DOI: 10.1007/s43979-022-00010-y.
|
2 |
DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): eaas9793. DOI: 10.1126/science.aas9793.
|
3 |
ZHANG M Y, SHI L F, HU P, et al. Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency[J]. Journal of Energy Storage, 2023, 57: 106234. DOI: 10.1016/j.est.2022.106234.
|
4 |
XUE X J, ZHAO C Y. Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores[J]. Applied Energy, 2023, 329: 120274. DOI: 10.1016/j.apenergy.2022.120274.
|
5 |
XUE X J, DONG J, ZHAO C Y. Corrosion evaluation of austenitic stainless steels in Li2CO3-K2CO3 eutectic salt for thermal energy storage[J]. Journal of Energy Storage, 2024, 99: 113312. DOI: 10.1016/j.est.2024.113312.
|
6 |
VECCHI A, KNOBLOCH K, LIANG T, et al. Carnot battery development: A review on system performance, applications and commercial state-of-the-art[J]. Journal of Energy Storage, 2022, 55: 105782. DOI: 10.1016/j.est.2022.105782.
|
7 |
BASTA A, BASTA V, SPALE J, et al. Conversion of combined heat and power coal-fired plants to Carnot batteries - Prospective sites for early grid-scale applications[J]. Journal of Energy Storage, 2022, 55: 105548. DOI: 10.1016/j.est.2022.105548.
|
8 |
STEINMANN W D, BAUER D, JOCKENHÖFER H, et al. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity[J]. Energy, 2019, 183: 185-190. DOI: 10.1016/j.energy.2019.06.058.
|
9 |
XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: 115502. DOI: 10.1016/j.enconman.2022.115502.
|
10 |
CASCETTA M, LICHERI F, MERCHÁN R P, et al. Operating performance of a Joule-Brayton pumped thermal energy storage system integrated with a concentrated solar power plant[J]. Journal of Energy Storage, 2023, 73: 108865. DOI: 10.1016/j.est.2023.108865.
|
11 |
ZHANG H, WANG L, LIN X P, et al. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle[J]. Applied Energy, 2020, 278: 115607. DOI: 10.1016/j.apenergy.2020.115607.
|
12 |
WANG H N, XUE X J, ZHAO C Y. Performance analysis on combined energy supply system based on Carnot battery with packed-bed thermal energy storage[J]. Renewable Energy, 2024, 228: 120702. DOI: 10.1016/j.renene.2024.120702.
|
13 |
PETROLLESE M, CASCETTA M, TOLA V, et al. Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation[J]. Energy, 2022, 247: 123516. DOI: 10.1016/j. energy. 2022.123516.
|
14 |
XUE X J, WANG H N, WANG J H, et al. Experimental and numerical investigation on latent heat/cold stores for advanced pumped-thermal energy storage[J]. Energy, 2024, 300: 131490. DOI: 10.1016/j.energy.2024.131490.
|
15 |
ZAMENGO M, YOSHIDA K, MORIKAWA J. Numerical evaluation of a Carnot battery system comprising a chemical heat storage/pump and a Brayton cycle[J]. Journal of Energy Storage, 2021, 41: 102955. DOI: 10.1016/j.est.2021.102955.
|
16 |
ADINE H A, EL QARNIA H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied Mathematical Modelling, 2009, 33(4): 2132-2144. DOI: 10.1016/j.apm.2008.05.016.
|
17 |
LI X Z, CHEN S, TAN Y Y, et al. Thermal storage performance of a novel shell-and-tube latent heat storage system: Active role of inner tube improvement and fin distribution optimization[J]. Renewable Energy, 2024, 228: 120695. DOI: 10.1016/j.renene. 2024.120695.
|
18 |
ZHAO Y, YOU Y, LIU H B, et al. Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process[J]. Energy, 2018, 157: 690-706. DOI: 10.1016/j.energy.2018.05.193.
|
19 |
ZHAO Y, SONG J, ZHAO C Y, et al. Thermodynamic investigation of latent-heat stores for pumped-thermal energy storage[J]. Journal of Energy Storage, 2022, 55: 105802. DOI: 10.1016/j.est.2022.105802.
|
20 |
MAHDI M S, MAHOOD H B, ALAMMAR A A, et al. Numerical investigation of PCM melting using different tube configurations in a shell and tube latent heat thermal storage unit[J]. Thermal Science and Engineering Progress, 2021, 25: 101030. DOI: 10.1016/j.tsep.2021.101030.
|
21 |
LI W L, LIANG Y H, GAO H C, et al. Development and experimental analysis of a novel type of phase change material based shell-and-tube latent heat storage for heat pump system[J]. Energy Conversion and Management, 2024, 321: 119095. DOI: 10.1016/j.enconman.2024.119095.
|
22 |
WOODS J, MAHVI A, GOYAL A, et al. Rate capability and Ragone plots for phase change thermal energy storage[J]. Nature Energy, 2021, 6: 295-302. DOI: 10.1038/s41560-021-00778-w.
|
23 |
KOTHANDARAMAN C. Fundamentals of heat and mass transfer[M/OL]. Fundamentals of heat and mass transfer, 2006[2024-10-17]. http://cds.cern.ch/record/1607997.
|
24 |
WEI G S, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. DOI: 10.1016/j.rser.2017.05.271.
|
25 |
BEJAN A. Advanced engineering thermodynamics, 4th edition[J/OL]. 2016[2024-10-17]. http://www.onacademic.com/detail/journal_1000039634363910_135e.html. DOI:10.1002/ 9781119245964.fmatter.
|