Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2740-2757.doi: 10.19799/j.cnki.2095-4239.2024.0184
• Energy Storage System and Engineering • Previous Articles Next Articles
Yongqi LI1(), Yun DU3, Zhenhua FANG4, Songtong ZHANG2, Xiayu ZHU2, Hailiang HU1(), Jingyi QIU2, Hai MING2()
Received:
2024-03-04
Revised:
2024-05-06
Online:
2024-08-28
Published:
2024-08-15
Contact:
Hailiang HU, Hai MING
E-mail:liyongqi12023@outlook.com;hlhu@gzmu.edu.cn;hai.mingenergy@hotmail.com
CLC Number:
Yongqi LI, Yun DU, Zhenhua FANG, Songtong ZHANG, Xiayu ZHU, Hailiang HU, Jingyi QIU, Hai MING. Review of the operation and fault handling analysis of new energy microgrid systems in military applications[J]. Energy Storage Science and Technology, 2024, 13(8): 2740-2757.
1 | KEISANG K, BADER T, SAMIKANNU R. Review of operation and maintenance methodologies for solar photovoltaic microgrids[J]. Frontiers in Energy Research, 2021, 9: 730230. DOI: 10.3389/fenrg.2021.730230. |
2 | ZHANG J, HUANG W L. A pilot assessment of new energy usage behaviors: The impacts of environmental accident, cognitions, and new energy policies[J]. Frontiers in Environmental Science, 2022, 10: 955999. DOI: 10.3389/fenvs.2022.955999. |
3 | JOUHARA H, MONTORSI L, SAYEGH M A. Advances and applications of renewable energy[J]. Renewable Energy, 2021, 165: 75-76. DOI: 10.1016/j.renene.2020.11.092. |
4 | BOUDET H S. Public perceptions of and responses to new energy technologies[J]. Nature Energy, 2019, 4(6): 446-455. DOI: 10.1038/s41560-019-0399-x |
5 | CHAUHAN A, SAINI R P. A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 99-120. DOI: 10.1016/j.rser.2014.05.079. |
6 | BOURAIMA M B, AYYILDIZ E, BADI I, et al. An integrated intelligent decision support framework for the development of photovoltaic solar power[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107253. DOI:10.1016/j.engappai. 2023. 107253 |
7 | SARITAS O, BURMAOGLU S. Future of sustainable military operations under emerging energy and security considerations[J]. Technological Forecasting and Social Change, 2016, 102: 331-343. DOI: 10.1016/j.techfore.2015.08.010. |
8 | BUNKER K J, COOK M D, WEAVER W W, et al. Multidimensional optimal droop control for DC microgrids in military applications[J]. Applied Sciences, 2018, 8(10): 1966. DOI: 10.3390/app8101966. |
9 | JIANG P, HUANG S J, ZHANG T. Asymmetric information in military microgrid confrontations—Evaluation metric and influence analysis[J]. Energies, 2020, 13(8): 1954. DOI: 10.3390/en13081954. |
10 | ADEFARATI T, BANSAL R C. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources[J]. Applied Energy, 2019, 236: 1089-1114. DOI: 10.1016/j.apenergy.2018.12.050. |
11 | ANUAT E, VAN BOSSUYT D L, POLLMAN A. Energy resilience impact of supply chain network disruption to military microgrids[J]. Infrastructures, 2021, 7(1): 4. DOI: 10.3390/infrastructures 7010004. |
12 | KAIN A, VAN BOSSUYT D L, POLLMAN A. Investigation of nanogrids for improved navy installation energy resilience[J]. Applied Sciences, 2021, 11(9): 4298. DOI: 10.3390/app11094298. |
13 | LAI K X, ZHANG L. Sizing and siting of energy storage systems in a military-based vehicle-to-grid microgrid[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 1909-1919. DOI: 10.1109/TIA.2021.3057339. |
14 | PONCE-JARA M A, RUIZ E, GIL R, et al. Smart Grid: Assessment of the past and present in developed and developing countries[J]. Energy Strategy Reviews, 2017, 18: 38-52. DOI: 10.1016/j.esr.2017.09.011. |
15 | WANG R, HSU S C, ZHENG S N, et al. Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy[J]. Applied Energy, 2020, 274: 115287. DOI: 10.1016/j.apenergy.2020.115287. |
16 | ABDELRAZIK M K, ABDELAZIZ S E, HASSAN M F, et al. Climate action: Prospects of solar energy in Africa[J]. Energy Reports, 2022, 8: 11363-11377. DOI: 10.1016/j.egyr.2022.08.252 |
17 | HUSSAIN A, BUI V H, KIM H M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience[J]. Applied Energy, 2019, 240: 56-72. DOI: 10.1016/j.apenergy.2019.02.055. |
18 | ASLAN M, LSIKL H. Green energy for the battlefield[J]. International Journal of Green Energy, 2017, 14(12): 1020-1026. DOI: 10.1080/15435075.2017.1354299 |
19 | 杨敏, 张正豪, 裴向前, 等. 美国陆军电力与能源战略[J]. 电力与能源, 2015, 36(2): 135-141. |
YANG M, ZHANG Z H, PEI X Q, et al. Power and energy strategy of U. S. Army[J]. Power & Energy, 2015, 36(2): 135-141. | |
20 | 赵一可, 李雷. 美军供电保障发展动态及启示[J]. 中国储运, 2020(12): 177-178. |
ZHAO Y K, LI L. Development trends and enlightenment of US military power supply support[J]. China Storage & Transport, 2020(12): 177-178. | |
21 | 石珊珊. "氢"装上阵 GE HA燃机赋能电力系统新赛道[N]. 机电商报, 2023-03-13(A08). |
SHI S S. "Hydrogen" is put on the GEHA gas turbine powered new power system track [N]. Electromechanical Business Daily, 2023-03-13 (A08). | |
22 | 刘嘉杰. 城镇建筑领域碳达峰碳中和实施路径探索[J]. 住宅与房地产, 2023(20): 19-22. |
LIU J J. Exploration on the implementation path of carbon neutrality in peak carbon dioxide emissions in the field of urban construction[J]. Housing and Real Estate, 2023(20): 19-22. | |
23 | 于海青, 张涛, 明梦君. 关于智慧军事能源的思考[J]. 国防科技, 2019, 40(2): 4-8. DOI: 10.13943/j.issn1671-4547.2019.02.02. |
YU H Q, ZHANG T, MING M J. Thoughts on the smart military energy[J]. National Defense Technology, 2019, 40(2): 4-8. DOI: 10.13943/j.issn1671-4547.2019.02.02. | |
24 | PEINADO GONZALO A, PLIEGO MARUGÁN A, GARCÍA MÁRQUEZ F P. Survey of maintenance management for photovoltaic power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110347. DOI: 10.1016/j.rser.2020. 110347. |
25 | ALAM M K, KHAN F, JOHNSON J, et al. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques[J]. IEEE Journal of Photovoltaics, 2015, 5(3): 982-997. DOI: 10.1109/JPHOTOV.2015.2397599. |
26 | SOOMAR A M, HAKEEM A, MESSAOUDI M, et al. Solar photovoltaic energy optimization and challenges[J]. Frontiers in Energy Research, 2022, 10: 879985. DOI: 10.3389/fenrg. 2022.879985. |
27 | CORREA-BAENA J P, ABATE A, SALIBA M, et al. The rapid evolution of highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(3): 710-727. DOI: 10.1039/C6EE03397K. |
28 | NGHITEVELEKWA K, BANSAL R C. A review of generation dispatch with large-scale photovoltaic systems[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 615-624. DOI: 10.1016/j.rser.2017.08.035. |
29 | YU Y, GAO B W, LU C, et al. Photovoltaic power station operation and maintenance data collection and analysis[J]. Journal of Physics: Conference Series, 2022, 2360(1): 012039. DOI: 10.1088/1742-6596/2360/1/012039. |
30 | DHERE N G, SHIRADKAR N S. Fire hazard and other safety concerns of photovoltaic systems[J]. Journal of Photonics for Energy, 2012, 2(1): 022006. DOI: 10.1117/1.jpe.2.022006. |
31 | 熊昌全, 温贤茂, 张宇宁, 等. 光伏组件发电故障诊断方法研究[J]. 科技创新与应用, 2023, 13(9): 77-81, 85. DOI: 10.19981/j.CN23-1581/G3.2023.09.019. |
XIONG C Q, WEN X M, ZHANG Y N, et al. Research on fault diagnosis method of photovoltaic module power generation[J]. Technology Innovation and Application, 2023, 13(9): 77-81, 85. DOI: 10.19981/j.CN23-1581/G3.2023.09.019. | |
32 | 岳啸. 光伏发电系统的运行和维护[J]. 南方农机, 2018, 49(22): 173. DOI: 10.3969/j.issn.1672-3872.2018.22.157. |
YUE X. Operation and maintenance of photovoltaic power generation system[J]. China Southern Agricultural Machinery, 2018, 49(22): 173. DOI: 10.3969/j.issn.1672-3872.2018.22.157. | |
33 | KIM J, RABELO M, PADI S P, et al. A review of the degradation of photovoltaic modules for life expectancy[J]. Energies, 2021, 14(14): 4278. DOI: 10.3390/en14144278. |
34 | 李智华, 马浩强, 吴春华, 等. 基于三参数的光伏组件老化程度诊断[J]. 中国电机工程学报, 2022, 42(9): 3327-3337. DOI: 10.13334/j.0258-8013.pcsee.210754. |
LI Z H, MA H Q, WU C H, et al. Diagnosing the aging degree of photovoltaic modules based on three parameters[J]. Proceedings of the CSEE, 2022, 42(9): 3327-3337. DOI: 10.13334/j.0258-8013.pcsee.210754. | |
35 | 石凯, 李光明, 吴甫, 等. 光伏发电系统电气设备故障原因及处理措施分析[J]. 太阳能, 2023(3): 58-67. DOI: 10.19911/j.1003-0417.tyn20221209.03. |
SHI K, LI G M, WU F, et al. Analysis on causes and treatment measures of electrical equipment failure in PV power generation system[J]. Solar Energy, 2023(3): 58-67. DOI: 10.19911/j.1003-0417.tyn20221209.03. | |
36 | 孟祥云, 张大为, 王琦, 等. 基于ACCESS数据库的光伏组件隐裂信息管理[J]. 太阳能, 2021(10): 20-25. DOI: 10.19911/j.1003-0417.tyn20200817.01. |
MENG X Y, ZHANG D W, WANG Q, et al. Pv modules hidden crack information management based on access database[J]. Solar Energy, 2021(10): 20-25. DOI: 10.19911/j.1003-0417.tyn20200817.01. | |
37 | 王伯涛, 王忠阳, 连爱红. 光伏逆变器常见故障及排除方法[J]. 农村电工, 2018, 26(8): 38-39. DOI: 10.3969/j.issn.1006-8910.2018.08.039. |
WANG B T, WANG Z Y, LIAN A H. Common faults of photovoltaic inverter and their elimination methods[J]. Rural Electician, 2018, 26(8): 38-39. DOI: 10.3969/j.issn.1006-8910.2018.08.039. | |
38 | JAEN-CUELLAR A Y, ELVIRA-ORTIZ D A, OSORNIO-RIOS R A, et al. Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review[J]. Energies, 2022, 15(15): 5404. DOI: 10.3390/en15155404. |
39 | PREHODA E W, SCHELLY C, PEARCE J M. U. S. strategic solar photovoltaic-powered microgrid deployment for enhanced national security[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 167-175. DOI: 10.1016/j.rser.2017.04.094. |
40 | KHALIL I U, UL-HAQ A, MAHMOUD Y, et al. Comparative analysis of photovoltaic faults and performance evaluation of its detection techniques[J]. IEEE Access, 2020, 8: 26676-26700. DOI: 10.1109/ACCESS.2020.2970531. |
41 | 惠杰, 沈金荣, 孙贤贤. 智能光伏发电系统故障识别和定位方法研究[J]. 智能电网, 2016, 4(11): 1113-1116. DOI: 10.14171/j.2095-5944.sg.2016.11.010. |
HUI J, SHEN J R, SUN X X. Identification and location methods for intelligent PV system malfunctions[J]. Smart Grid, 2016, 4(11): 1113-1116. DOI: 10.14171/j.2095-5944.sg.2016.11.010. | |
42 | HAMMAD B, AL-ABED M, AL-GHANDOOR A, et al. Modeling and analysis of dust and temperature effects on photovoltaic systems' performance and optimal cleaning frequency: Jordan case study[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2218-2234. DOI: 10.1016/j.rser.2017.08.070. |
43 | BONACINA F, CORSINI A, CARDILLO L, et al. Complex network analysis of photovoltaic plant operations and failure modes[J]. Energies, 2019, 12(10): 1995. DOI: 10.3390/en12101995. |
44 | OMAÑA M, GROSSI M, METRA C. Early detection of photovoltaic system inverter faults[J]. Microelectronics Reliability, 2022, 135: 114594. DOI: 10.1016/j.microrel.2022.114594. |
45 | GEOFF W. Evaluating MPPT converter topologies using a MATLAB PV model[J]. Journal of Electrical & Electronics Engineering, Australia, 2001, 21(1): 49-55. |
46 | NAUGHTON B, HOUCHENS B, SUMMERVILLE B, et al. Design guidelines for deployable wind turbines for defense and disaster response missions [J]. Journal of Physics: Conference Series, 2022, DOI: DOI 10.1088/1742-6596/2265/4/042074. |
47 | 石港, 王伟, 雷志鹏, 等. 风力发电机组状态监测与故障诊断研究综述[J]. 山西电力, 2023(1): 43-46. DOI: 10.3969/j.issn.1671-0320.2023.01.010. |
SHI G, WANG W, LEI Z P, et al. Review on condition monitoring and fault diagnosis of wind turbines[J]. Shanxi Electric Power, 2023(1): 43-46. DOI: 10.3969/j.issn.1671-0320.2023.01.010. | |
48 | GAUDERN N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion[J]. Journal of Physics: Conference Series, 2014, 524: 012031. DOI: 10.1088/1742-6596/524/1/012031. |
49 | YU Y J, CAO H, YAN X Y, et al. Defect identification of wind turbine blades based on defect semantic features with transfer feature extractor[J]. Neurocomputing, 2020, 376: 1-9. DOI: 10.1016/j.neucom.2019.09.071. |
50 | LIU W Y, TANG B P, HAN J G, et al. The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 466-472. DOI: 10.1016/j.rser.2014.12.005. |
51 | MCMILLAN D, AULT G W. Quantification of condition monitoring benefit for offshore wind turbines[J]. Wind Engineering, 2007, 31(4): 267-285. DOI: 10.1260/030952407783123060. |
52 | REZAMAND M, KORDESTANI M, CARRIVEAU R, et al. A new hybrid fault detection method for wind turbine blades using recursive PCA and wavelet-based PDF[J]. IEEE Sensors Journal, 2020, 20(4): 2023-2033. DOI: 10.1109/JSEN.2019.2948997. |
53 | JIANG G Q, JIA C L, NIE S Q, et al. Multiview enhanced fault diagnosis for wind turbine gearbox bearings with fusion of vibration and current signals[J]. Measurement, 2022, 196: 111159. DOI: 10.1016/j.measurement.2022.111159. |
54 | WEN X Q, XU Z A. Wind turbine fault diagnosis based on ReliefF-PCA and DNN[J]. Expert Systems with Applications, 2021, 178: 115016. DOI: 10.1016/j.eswa.2021.115016. |
55 | DUAN H, LU M, SUN Y T, et al. Fault diagnosis of PMSG wind power generation system based on LMD and MSE[J]. Complexity, 2020, 2020: 5306473. DOI: 10.1155/2020/5306473. |
56 | ZHANG W, ZHANG Z Z, YAO Q, et al. Fault diagnosis of wind turbine generator system based on PMI-LSSVM[J]. Journal of Physics: Conference Series, 2021, 2095(1): 012009. DOI: 10.1088/1742-6596/2095/1/012009. |
57 | 王旭东, 尹钊, 刘畅, 等. 储能技术在军事领域中的应用与展望[J]. 储能科学与技术, 2020, 9(S1): 52-61. DOI: 10.19799/j.cnki.2095-4239.2020.0207. |
WANG X D, YIN Z, LIU C, et al. Application and prospect of energy storage technology in military field[J]. Energy Storage Science and Technology, 2020, 9(S1): 52-61. DOI: 10.19799/j.cnki.2095-4239.2020.0207. | |
58 | LUCCHESE F C, CANHA L N, BRIGNOL W S, et al. A review on energy storage systems and military applications[C]// 2020 55th International Universities Power Engineering Conference (UPEC). IEEE, 2020. DOI: 10.1109/UPEC49904.2020.9209892. |
59 | 张鹏, 周建波, 郭恺超. 新能源电力系统中的储能技术[J]. 中国设备工程, 2023(5): 219-221. DOI: 10.3969/j.issn.1671-0711.2023.05.090. |
ZHANG P, ZHOU J B, GUO K C. Energy storage technology in new energy power system[J]. China Plant Engineering, 2023(5): 219-221. DOI: 10.3969/j.issn.1671-0711.2023.05.090. | |
60 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. |
61 | WANG H B, XU H, ZHAO Z Y, et al. An experimental analysis on thermal runaway and its propagation in cell-to-pack lithium-ion batteries[J]. Applied Thermal Engineering, 2022, 211: 118418. DOI: 10.1016/j.applthermaleng.2022.118418. |
62 | AZZOUZ I, YAHMADI R, BRIK K, et al. Analysis of the critical failure modes and developing an aging assessment methodology for lithium iron phosphate batteries[J]. Electrical Engineering, 2022, 104(1): 27-43. DOI: 10.1007/s00202-021-01320-7. |
63 | ZHAO P, YANG S Y. On planar reaction front in condensed materials: Reduced model, propagation speed, reaction zone balance, and insights into battery thermal runaway[J]. Combustion and Flame, 2022, 245: 112346. DOI: 10.1016/j.combustflame.2022.112346. |
64 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. DOI: 10.12028/j.issn.2095-4239.2018.0165. |
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. DOI: 10.12028/j.issn.2095-4239.2018.0165. | |
65 | JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overcharge and aging analytics of Li-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090547. DOI: 10.1149/1945-7111/ab9569. |
66 | DONGSHENG R E N, XUNING F, XUEBING H A N, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957. |
67 | LEWERENZ M, MÜNNIX J, SCHMALSTIEG J, et al. Systematic aging of commercial LiFePO4|graphite cylindrical cells including a theory explaining rise of capacity during aging[J]. Journal of Power Sources, 2017, 345: 254-263. DOI: 10.1016/j.jpowsour. 2017.01.133. |
68 | GAO W K, ZHENG Y J, OUYANG M G, et al. Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2132-2142. DOI: 10.1109/TIE.2018.2838109. |
69 | WU C, ZHU C B, GE Y W, et al. A review on fault mechanism and diagnosis approach for Li-ion batteries[J]. Journal of Nanomaterials, 2015, 2015: 631263. DOI: 10.1155/2015/631263. |
70 | LYU P Z, LIU X J, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31: 195-220. DOI: 10.1016/j.ensm.2020.06.042. |
71 | CHEN S Y, GAO Z H, SUN T J. Safety challenges and safety measures of Li-ion batteries[J]. Energy Science & Engineering, 2021, 9(9): 1647-1672. DOI: 10.1002/ese3.895. |
72 | HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: 100811. DOI: 10.1016/j.est.2019.100811. |
73 | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239. 2021.0369. | |
74 | 田相军, 郭亚洲, 凌泽, 等. 锂离子动力电池滥用条件下热失控特性研究[J]. 电源技术, 2020, 44(5): 679-681, 692. DOI: 10.3969/j.issn.1002-087X.2020.05.009. |
TIAN X J, GUO Y Z, LING Z, et al. Thermal runaway characteristics study of lithium ion power battery under various abuse conditions[J]. Chinese Journal of Power Sources, 2020, 44(5): 679-681, 692. DOI: 10.3969/j.issn.1002-087X.2020.05.009. | |
75 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. DOI: 10.1016/j.jpowsour. 2014.11.017. |
76 | JIN C Y, SUN Y D, WANG H B, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling[J]. Applied Energy, 2022, 312: 118760. DOI: 10.1016/j.apenergy. 2022.118760. |
77 | MD SAID M S, MOHD TOHIR M Z. Visual and thermal imaging of lithium-ion battery thermal runaway induced by mechanical impact[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104854. DOI: 10.1016/j.jlp.2022.104854. |
78 | NXUMALO Z C, TARWIREYI P, ADIGUN M O. Lithium-based batteries in tactical military applications: A review[C]// 2015 International Conference on Computer, Communications, and Control Technology (I4CT). IEEE, 2015: 575-579. DOI: 10.1109/I4CT.2015.7219644. |
79 | CHEN H D, BUSTON J E H, GILL J, et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate[J]. Journal of Power Sources, 2020, 472: 228585. DOI: 10.1016/j.jpowsour.2020.228585. |
80 | WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730. DOI: 10.1016/j.jhazmat.2019.06.007. |
81 | 胡斯航, 王世杰, 刘洋, 等. 锂离子电池热失控风险综述[J]. 电池, 2022, 52(1): 96-100. DOI: 10.19535/j.1001-1579.2022.01.023. |
HU S H, WANG S J, LIU Y, et al. Review on thermal runaway risk for Li-ion battery[J]. Battery Bimonthly, 2022, 52(1): 96-100. DOI: 10.19535/j.1001-1579.2022.01.023. | |
82 | GAO Y M, MOGHBELLI H, EHSANI M, et al. Investigation of high-energy and high-power hybrid energy storage systems for military vehicle application[C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003: 1843-1850. DOI: 10.4271/2003-01-2287. |
83 | 郝奕帆, 祝夏雨, 王静, 等. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239.2023.0081. |
HAO Y F, ZHU X Y, WANG J, et al. Analysis of battery nondestructive testing and monitoring methods[J]. Energy Storage Science and Technology, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239.2023.0081. | |
84 | LI B, PAREKH M H, ADAMS R A, et al. Lithium-ion battery thermal safety by early internal detection, prediction and prevention[J]. Scientific Reports, 2019, 9(1): 13255. DOI: 10.1038/s41598-019-49616-w. |
85 | ZHAO E W, LIU T, JÓNSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228. DOI: 10.1038/s41586-020-2081-7. |
86 | NONAKA T, OKUDA C, OKA H, et al. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2016, 325: 79-83. DOI: 10.1016/j.jpowsour.2016.06.013. |
87 | SHEN Y, ZOU B C, ZHANG Z D, et al. In situ detection of lithium-ion batteries by ultrasonic technologies[J]. Energy Storage Materials, 2023, 62: 102915. DOI: 10.1016/j.ensm.2023.102915. |
88 | SHABSHAB S C, LINDAHL P A, NOWOCIN J K, et al. Demand smoothing in military microgrids through coordinated direct load control[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 1917-1927. DOI: 10.1109/TSG.2019.2945278. |
89 | 孟明, 陈世超, 赵树军, 等. 新能源微电网研究综述[J]. 现代电力, 2017, 34(1): 1-7. DOI: 10.3969/j.issn.1007-2322.2017.01.001. |
MENG M, CHEN S C, ZHAO S J, et al. Overview on research of renewable energy microgrid[J]. Modern Electric Power, 2017, 34(1): 1-7. DOI: 10.3969/j.issn.1007-2322.2017.01.001. | |
90 | SEN S, KUMAR V. Microgrid control: A comprehensive survey[J]. Annual Reviews in Control, 2018, 45: 118-151. DOI: 10.1016/j.arcontrol.2018.04.012. |
91 | 苗若玖. 战场上的"无形杀手"——从石墨炸弹到电磁脉冲弹[J]. 知识就是力量, 2016(1): 82-85. DOI: 10.3969/j.issn.0529-150X.2016.01.027. |
MIAO R J. "Invisible killer" on the battlefield — From graphite bomb to electromagnetic pulse bomb[J]. Knowledge Is Power, 2016(1): 82-85. DOI: 10.3969/j.issn.0529-150X.2016.01.027. | |
92 | LI Y C, LIU Q H. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments[J]. Energy Reports, 2021, 7: 8176-8186. DOI: 10.1016/j.egyr.2021.08.126. |
93 | RANA M M, LI L, SU S W. Cyber attack protection and control of microgrids[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 602-609. DOI: 10.1109/JAS.2017.7510655. |
94 | ANANDA S, GU J C, YANG M T, et al. Multi-agent system fault protection with topology identification in microgrids[J]. Energies, 2016, 10(1): 28. DOI:10.3390/en10010028. |
[1] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[2] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[3] | Qianqian ZHOU, Yong HUANG, Ke CUI, Danan SUN. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device [J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596. |
[4] | Qun GE, Tao LIANG, Bin HOU, Wanhong WANG, Long ZHANG, Liangyu WU, Chengbin ZHANG, Xiangdong LIU. Performance enhancement of thermal energy storage units for plant factories [J]. Energy Storage Science and Technology, 2024, 13(8): 2687-2695. |
[5] | Ye CHEN, Jin LI, Houfu WU, Shaoyu ZHANG, Yuxi CHU, Ping ZHUO. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. |
[6] | Changfa LIU, Liheng FU, Zengli ZHANG, Hongsheng LI, Jingbin GU. Adaptive coordinated control method for distributed energy storage capacity with high proportion of photovoltaic access [J]. Energy Storage Science and Technology, 2024, 13(8): 2696-2703. |
[7] | Pengyu LI, Xipeng LIN, Liang WANG, Haisheng CHEN, Yifei WANG. Study on supercritical nitrogen flow and heat transfer characteristics in a vertical corrugated channel [J]. Energy Storage Science and Technology, 2024, 13(8): 2605-2614. |
[8] | Zheng LI, Julong CHEN, Wenlin LI, Yu ZHANG, Jierui YANG, Sizhe CHEN. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. |
[9] | Wentao ZHU, Yang ZHOU, Yimin XU, Tao SHI. Application and optimization of battery energy storage technology in new energy generation system [J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. |
[10] | Jinwei SONG, Donghai XUAN, Weijia WANG, Fei SUN, Yan SONG. Operation and maintenance detection technology for energy storage transformers based on voiceprint features [J]. Energy Storage Science and Technology, 2024, 13(8): 2758-2760. |
[11] | Yuhan DAI, Chun LIU, Peng ZHOU, Junpeng ZHOU, Siyu XIANG. Application and research progress of energy storage technology in power systems under the dual carbon background [J]. Energy Storage Science and Technology, 2024, 13(8): 2772-2774. |
[12] | Zheng KOU, Zhenlong WANG. Effect analysis of energy storage equipment in the field of power Internet of Things [J]. Energy Storage Science and Technology, 2024, 13(8): 2785-2787. |
[13] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
[14] | Junhong LIU. Application of data-driven technology in voiceprint recognition and monitoring diagnosis of power energy storage equipment [J]. Energy Storage Science and Technology, 2024, 13(8): 2835-2838. |
[15] | Huanjie LU, Xiaoming CHEN, Zhihao WU, Jinyou QIU. Performance of an integrated cooling system combining a cooling tower and a pipe-embedded phase-change-material slab roof [J]. Energy Storage Science and Technology, 2024, 13(7): 2435-2446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||