Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2589-2596.doi: 10.19799/j.cnki.2095-4239.2024.0231
• Energy Storage Materials and Devices • Previous Articles Next Articles
Qianqian ZHOU(), Yong HUANG(), Ke CUI, Danan SUN
Received:
2024-03-18
Revised:
2024-04-01
Online:
2024-08-28
Published:
2024-08-15
Contact:
Yong HUANG
E-mail:598398795@qq.com;huangyong08846@163.com
CLC Number:
Qianqian ZHOU, Yong HUANG, Ke CUI, Danan SUN. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device[J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596.
1 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. |
2 | 焦渊远, 王艺斐, 戴兴建, 等. 飞轮储能系统电机转子散热研究进展[J]. 储能科学与技术, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki.2095-4239.2023.0261. |
JIAO Y Y, WANG Y F, DAI X J, et al. Overview of the motor-generator rotor cooling system in a flywheel energy storage system[J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki.2095-4239.2023.0261. | |
3 | 陈磊, 王亮, 林曦鹏, 等. 飞轮储能热管理研究现状分析[J]. 中外能源, 2019, 24(2): 84-91. |
CHEN L, WANG L, LIN X P, et al. Analysis on research status of thermal management of flywheel energy storage system[J]. Sino-Global Energy, 2019, 24(2): 84-91. | |
4 | 张德金, 熊万里, 吕浪, 等. 高速大功率永磁同步电机转子涡流损耗分析[J]. 计算机仿真, 2017, 34(1): 236-240, 279. DOI: 10.3969/j.issn.1006-9348.2017.01.048. |
ZHANG D J, XIONG W L, LV L, et al. An analysis of rotor eddy current losses in high-speed and high-power PMSM[J]. Computer Simulation, 2017, 34(1): 236-240, 279. DOI: 10.3969/j.issn.1006-9348.2017.01.048. | |
5 | 于明湖, 张玉秋, 乔正忠, 等. 永磁同步电机损耗分离方法研究[J]. 微特电机, 2015, 43(8): 14-18. DOI: 10.3969/j.issn.1004-7018. 2015.08.004. |
YU M H, ZHANG Y Q, QIAO Z Z, et al. Research on loss separation method of permanent magnet snchronous motor[J]. Small & Special Electrical Machines, 2015, 43(8): 14-18. DOI: 10.3969/j.issn.1004-7018.2015.08.004. | |
6 | 陈夺, 冯明. 电磁结构对高速永磁电机转子涡流损耗的影响[J]. 微电机, 2015, 48(2): 11-15. |
CHEN Duo, FENG Ming. Influence of electromagnetic structure on eddy current loss of rotor of high speed permanent magnet motor[J]. Micromotor, 2015, 48(2): 11-15. | |
7 | 汤勇, 孙亚隆, 郭志军, 等. 电机散热系统的研究现状与发展趋势[J]. 中国机械工程, 2021, 32(10): 1135-1150. DOI: 10.3969/j.issn.1004-132X.2021.10.001. |
TANG Y, SUN Y L, GUO Z J, et al. Development status and perspective trend of motor cooling systems[J]. China Mechanical Engineering, 2021, 32(10): 1135-1150. DOI: 10.3969/j.issn.1004-132X.2021.10.001. | |
8 | SUZUKI Y, KOYANAGI A, KOBAYASHI M, et al. Novel applications of the flywheel energy storage system[J]. Energy, 2005, 30(11/12): 2128-2143. DOI: 10.1016/j.energy.2004.08.018. |
9 | AJISMAN, YAMAGATA K, KOBUCHI J, et al. Study of cooling gases for windage loss reduction[J]. IEEJ Transactions on Power and Energy, 2000, 120(3): 478-483. DOI: 10.1541/ieejpes1990. 120.3_478. |
10 | YUKI A,MASARU N,HITOSHI H,et al. Non-contact unit cooling device by radiation of flywheel for power storage: JP2010037110[P]. 2011-08-09. |
11 | 陈起旭, 周阳, 杨来顺, 等. 大功率盘式交流永磁同步电机温度场流场耦合分析[J]. 电机与控制应用, 2017, 44(4): 20-27. DOI: 10.3969/j.issn.1673-6540.2017.04.004. |
CHEN Q X, ZHOU Y, YANG L S, et al. Coupling analysis of high power disc-type AC permanent magnet synchronous motor on temperature field and flow field[J]. Electric Machines & Control Application, 2017, 44(4): 20-27. DOI: 10.3969/j.issn.1673-6540.2017.04.004. | |
12 | 王淑旺, 高月仙, 谭立真. 永磁同步电机温度场分析与水道结构优化[J]. 电机与控制应用, 2016, 43(7): 51-56. DOI: 10.3969/j.issn.1673-6540.2016.07.010. |
WANG S W, GAO Y X, TAN L Z. Analysis of temperature field of permanent magnet synchronous motor and water jacket structure optimization[J]. Electric Machines & Control Application, 2016, 43(7): 51-56. DOI: 10.3969/j.issn.1673-6540.2016.07.010. | |
13 | 吴柏禧, 万珍平, 张昆, 等. 考虑温度场和流场的永磁同步电机折返型冷却水道设计[J]. 电工技术学报, 2019, 34(11): 2306-2314. DOI: 10.19595/j.cnki.1000-6753.tces.171483. |
WU B X, WAN Z P, ZHANG K, et al. Design of reentrant cooling channel in permanent magnet synchronous motor considering temperature field and flow field[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2306-2314. DOI: 10.19595/j.cnki.1000-6753.tces.171483. | |
14 | 丁杰, 张平. 永磁同步电机的冷却结构优化设计及温度场仿真[J]. 微特电机, 2016, 44(6): 31-34. DOI: 10.3969/j.issn.1004-7018. 2016.06.008. |
DING J, ZHANG P. Optimization design of cooling structure and temperature simulation for permanent magnet synchronous motor[J]. Small & Special Electrical Machines, 2016, 44(6): 31-34. DOI: 10.3969/j.issn.1004-7018.2016.06.008. | |
15 | 佟文明, 程雪斌. 高速水冷永磁电机冷却系统分析[J]. 电机与控制应用, 2016, 43(3): 16-21, 48. DOI: 10.3969/j.issn.1673-6540. 2016.03.003. |
TONG W M, CHENG X B. Cooling system analysis of high-speed water cooling permanent magnet motor[J]. Electric Machines & Control Application, 2016, 43(3): 16-21, 48. DOI: 10.3969/j.issn.1673-6540.2016.03.003. | |
16 | LEE K H, CHA H R, KIM Y B. Development of an interior permanent magnet motor through rotor cooling for electric vehicles[J]. Applied Thermal Engineering, 2016, 95: 348-356. DOI: 10.1016/j.applthermaleng.2015.11.022. |
17 | 杨学威, 张小发. 电机壳体Z字型冷却水道设计[J]. 电机与控制应用, 2016, 43(9): 62-65. DOI: 10.3969/j.issn.1673-6540.2016.09.011. |
YANG X W, ZHANG X F. Z-shaped cooling channels of motor shell designs[J]. Electric Machines & Control Application, 2016, 43(9): 62-65. DOI: 10.3969/j.issn.1673-6540.2016.09.011. | |
18 | 武岳, 张志锋, 平佳齐. 高功率密度轴向磁通永磁电机新型水冷结构设计与温度场分析[J]. 中国电机工程学报, 2021, 41(24): 8295-8305. DOI: 10.13334/j.0258-8013.pcsee.211291. |
WU Y, ZHANG Z F, PING J Q. New type water cooling structure design and temperature field analysis of high power density axial flux permanent magnet motor[J]. Proceedings of the CSEE, 2021, 41(24): 8295-8305. DOI: 10.13334/j.0258-8013.pcsee. 211291. |
[1] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[2] | Du JIN, Guangchen LIU, Bowen SUN, Tianyuan HUANG, Jianwei ZHANG, Guizhen TIAN, Lili JING. Primary frequency modulation control strategy for flywheel energy storage counting and wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1911-1920. |
[3] | Haifeng MA, Wenbo LI, Zonghui CAI, Lin LIU, Tong YU. Research on computer processing technology of flywheel energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1983-1985. |
[4] | Wei XIAO, Xiaowen WU, Jingling SUN, Wei CHEN. Numerical calculation of temperature field of energy storage battery module and optimization design of heat dissipation system [J]. Energy Storage Science and Technology, 2024, 13(4): 1159-1166. |
[5] | Hong LI, Jiangyi LV, Jiantong SONG, Dong YAN. Analysis of energy characteristics of electromechanical composite energy storage system for vehicles [J]. Energy Storage Science and Technology, 2024, 13(3): 906-913. |
[6] | Xinglong ZUO, Yibing LIU, Run QIN, Wenhao QU, Wei TENG. Dynamic characteristics of flywheel energy storage virtual synchronous machine and analysis of power system frequency improvement [J]. Energy Storage Science and Technology, 2023, 12(6): 1920-1927. |
[7] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[8] | Haishan LIU, Xianlong XU, Shuzhou WEI, Yalei PANG, Feng HONG. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of north China power grid [J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. |
[9] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[10] | Xin ZHANG, Zuoxia XING, Qitong FU, Chao ZHANG, Libing JIANG. Multiphysics study of induction heating for solid electric heat storage devices [J]. Energy Storage Science and Technology, 2023, 12(12): 3761-3769. |
[11] | Yuanyuan JIAO, Yifei WANG, Xingjian DAI, Hualiang ZHANG, Haisheng CHEN. Overview of the motor-generator rotor cooling system in a flywheel energy storage system [J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. |
[12] | Juntao CHEN, Yajun WANG, Shunyi SONG, Wenhao QU, Yibing LIU. Simulation of the primary frequency modulation process of wind power with an auxiliary flywheel energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 172-179. |
[13] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[14] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. |
[15] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||