Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 906-913.doi: 10.19799/j.cnki.2095-4239.2023.0778
• Energy Storage System and Engineering • Previous Articles Next Articles
Hong LI(), Jiangyi LV(), Jiantong SONG, Dong YAN
Received:
2023-10-31
Revised:
2023-11-04
Online:
2024-03-28
Published:
2024-03-28
Contact:
Jiangyi LV
E-mail:lihong9012@163.com;ljybuaa@163.com
CLC Number:
Hong LI, Jiangyi LV, Jiantong SONG, Dong YAN. Analysis of energy characteristics of electromechanical composite energy storage system for vehicles[J]. Energy Storage Science and Technology, 2024, 13(3): 906-913.
Table 2
Power conversion of electromechanical composite energy storage system"
外转子角速度/ | 内转子角速度/ | 输入功率 /kW | 输出功率 /kW | 转差功率 /kW |
---|---|---|---|---|
215.7 | 125.7 | 2.157 | 1.257 | 0.900 |
212.6 | 128.9 | 2.126 | 1.290 | 0.836 |
209.4 | 131.3 | 2.094 | 1.313 | 0.781 |
206.3 | 132.7 | 2.062 | 1.328 | 0.734 |
203.2 | 134.9 | 2.032 | 1.349 | 0.683 |
200.0 | 138.6 | 2.000 | 1.386 | 0.614 |
196.9 | 139.1 | 1.968 | 1.392 | 0.576 |
193.7 | 140.8 | 1.937 | 1.408 | 0.529 |
190.6 | 142.9 | 1.906 | 1.430 | 0.476 |
187.4 | 143.1 | 1.874 | 1.432 | 0.442 |
184.3 | 143.4 | 1.843 | 1.435 | 0.408 |
181.2 | 143.9 | 1.811 | 1.439 | 0.372 |
178.0 | 145.1 | 1.780 | 1.451 | 0.329 |
175.0 | 146.5 | 1.749 | 1.466 | 0.283 |
171.7 | 147.4 | 1.717 | 1.474 | 0.243 |
168.6 | 148.0 | 1.686 | 1.480 | 0.206 |
165.5 | 150.0 | 1.655 | 1.500 | 0.155 |
162.3 | 152.5 | 1.623 | 1.525 | 0.098 |
159.2 | 154.5 | 1.592 | 1.546 | 0.046 |
Table 4
Power characteristics of electromagnetic couplers"
时间/s | 外转子角速度/ | 内转子角速度/ | 输入功率/W | 输出功率/W | 转差功率/W |
---|---|---|---|---|---|
2.09 | 199.2 | 27.1 | 4983.3 | 677.9 | 4305.4 |
2.79 | 197.2 | 43.3 | 4932.9 | 1082.8 | 3850.1 |
3.28 | 195.2 | 52.4 | 4882.5 | 1310.2 | 3572.3 |
3.92 | 192.1 | 67.5 | 4803.8 | 1687.9 | 3115.9 |
4.56 | 189.3 | 82.8 | 4734.5 | 2070.0 | 2664.4 |
5.33 | 185.4 | 96.8 | 4636.8 | 2420.3 | 2216.5 |
5.95 | 182.5 | 108.8 | 4564.4 | 2720.6 | 1843.8 |
6.75 | 178.7 | 129.9 | 4469.9 | 3248.3 | 1221.5 |
7.59 | 174.4 | 149.0 | 4362.8 | 3726.0 | 636.7 |
8.49 | 169.6 | 163.3 | 4243.1 | 4085.4 | 157.6 |
1 | LIU W, QI H Z, LIU X T, et al. Evaluation of regenerative braking based on single-pedal control for electric vehicles[J]. Frontiers of Mechanical Engineering, 2020, 15(1): 166-179. |
2 | BERZI L, DELOGU M, PIERINI M. Development of driving cycles for electric vehicles in the context of the city of Florence[J]. Transportation Research Part D: Transport and Environment, 2016, 47: 299-322. |
3 | ATIENZA A H, CARIÑO A, JACINTO N, et al. Mechanical interface of flywheel kinetic energy recovery system on motorized tricycles[J]. Journal of Physics: Conference Series, 2020, 1519(1): 012001. |
4 | AMIRYAR M, PULLEN K. A review of flywheel energy storage system technologies and their applications[J]. Applied Sciences, 2017, 7(3): 286. |
5 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. |
6 | HANNAN M A, AZIDIN F A, MOHAMED A. Hybrid electric vehicles and their challenges: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 135-150. |
7 | VAZQUEZ S, LUKIC S M, GALVAN E, et al. Energy storage systems for transport and grid applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3881-3895. |
8 | GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. |
9 | HANSEN J G, O'KAIN D U. An assessment of flywheel high power energy storage technology for hybrid vehicles[R]. Oak Ridge: Oak Ridge National Laboratory, 2012. |
10 | DHAND A, PULLEN K. Review of flywheel based internal combustion engine hybrid vehicles[J]. International Journal of Automotive Technology, 2013, 14(5): 797-804. |
11 | SERRARENS A F A, SHEN S W, VELDPAUS F E. Control of a flywheel assisted driveline with continuously variable transmission[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125(3): 455-461. |
12 | 汤天浩. 电机及拖动基础[M]. 2版. 北京: 机械工业出版社, 2016: 182. |
TANG T H. Motor and drag foundation[M]. 2nd ed. Beijing: China Machine Press, 2016: 182. | |
13 | 夏磊, 江浩斌, 耿国庆. 重型车辆W-ECHPS中绕组式永磁耦合器的稳态性能研究[J]. 汽车工程, 2019, 41(6): 703-710. |
XIA L, JIANG H B, GENG G Q. A study on steady-state performance of winding type permanent magnet coupler in W-ECHPS system of a heavy vehicle[J]. Automotive Engineering, 2019, 41(6): 703-710. | |
14 | 唐斌, 江浩斌, 耿国庆, 等. E-ECHPS用电磁转差离合器建模与性能研究[J]. 广西大学学报(自然科学版), 2015, 40(5): 1127-1134. |
TANG B, JIANG H B, GENG G Q, et al. Modeling and performance investigation of electromagnetic slip clutch of E-ECHPS[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(5): 1127-1134. | |
15 | 陈焕江. 汽车行驶动能台架模拟的研究[J]. 西安公路交通大学学报, 1994, 14(2): 61-66. |
CHEN H J. Research on bench simulation of automobile driving kinetic energy[J]. Journal of Chang'an University (Natural Science Edition), 1994, 14(2): 61-66. |
[1] | Huabang ZHANG, Yue CHEN, Qin LI, Hongqiang WANG, Guofeng QIN, Qiang WU, Qingyu LI. Research on energy management strategy for a hybrid power system of ship's aluminum-air battery and lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(9): 2871-2880. |
[2] | Xinglong ZUO, Yibing LIU, Run QIN, Wenhao QU, Wei TENG. Dynamic characteristics of flywheel energy storage virtual synchronous machine and analysis of power system frequency improvement [J]. Energy Storage Science and Technology, 2023, 12(6): 1920-1927. |
[3] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[4] | Haishan LIU, Xianlong XU, Shuzhou WEI, Yalei PANG, Feng HONG. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of north China power grid [J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. |
[5] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[6] | Yuanyuan JIAO, Yifei WANG, Xingjian DAI, Hualiang ZHANG, Haisheng CHEN. Overview of the motor-generator rotor cooling system in a flywheel energy storage system [J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. |
[7] | Juntao CHEN, Yajun WANG, Shunyi SONG, Wenhao QU, Yibing LIU. Simulation of the primary frequency modulation process of wind power with an auxiliary flywheel energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 172-179. |
[8] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[9] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. |
[10] | Yong ZHOU, Xiangyu CHEN, Lin JIAN, Fuhui WANG, Degao TIAN, Chuanjun HAN. Design and experimental research on flywheel energy storage system of beam pumping unit [J]. Energy Storage Science and Technology, 2022, 11(2): 593-599. |
[11] | Shusheng LI, Jialiang WANG, Guangjun LI, Dachun WANG, Yadong CUI. Demonstration applications in wind solar energy storage field based on MW flywheel array system [J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. |
[12] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[13] | Qingxiang XU, Wei TENG, Xin WU, Yibing LIU, Shuangyin LIANG. Capacity configuration method of flywheel storage system for suppressing power fluctuation of wind farms [J]. Energy Storage Science and Technology, 2022, 11(12): 3906-3914. |
[14] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[15] | Hao QIN, Lijun QIN, Xuechen BAI, Cong LI. A control strategy of flywheel energy storage system participating frequency regulation with pumped storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3915-3925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||