Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1710-1720.doi: 10.19799/j.cnki.2095-4239.2023.0855
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xinyu LIU1(), Anan ZHANG2(), Changjiang LIAO1
Received:
2023-11-28
Revised:
2023-12-23
Online:
2024-05-28
Published:
2024-05-28
Contact:
Anan ZHANG
E-mail:liuxinyuzzzz@163.com;ananzhang@swpu.edu.cn
CLC Number:
Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures[J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720.
1 | YOKOKAWA H, SUZUKI M, YODA M, et al. Achievements of NEDO durability projects on SOFC stacks in the light of physicochemical mechanisms[J]. Fuel Cells, 2019, 19(4): 311-339. |
2 | 姚瑶, 蔡佩君, 王绍荣. 沼气燃料固体氧化物燃料电池阳极相关问题综述[J]. 陶瓷学报, 2021, 42(4): 560-568. |
YAO Y, CAI P J, WANG S R. Overview in anode related problems of solid oxide fuel cells fed with biogas[J]. Journal of Ceramics, 2021, 42(4): 560-568. | |
3 | KULIKOVSKY A A. Modelling of fuel cell stacks[M]//Analytical Modelling of Fuel Cells. Amsterdam: Elsevier, 2010: 193-272. |
4 | YUAN P. Effect of inlet flow maldistribution in the stacking direction on the performance of a solid oxide fuel cell stack[J]. Journal of Power Sources, 2008, 185(1): 381-391. |
5 | Peksen M. Numerical modeling of the thermomechanically induced stress in solid oxide fuel cells[M]. Wiley‐VCH Verlag GmbH & Co. KGaA, 2012. |
6 | PEKSEN M. A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11914-11928. |
7 | CANAVAR M, MAT A, CELIK S, et al. Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10030-10036. |
8 | KIM Y J, LEE M C. Numerical investigation of flow/heat transfer and structural stress in a planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18504-18513. |
9 | LIU L, KIM G Y, CHANDRA A. Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions[J]. Journal of Power Sources, 2010, 195(8): 2310-2318. |
10 | SERINCAN M F, PASAOGULLARI U, SAMMES N M. Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC)[J]. Journal of Power Sources, 2009, 192(2): 414-422. |
11 | ZHOU L, CHENG M J, YI B L, et al. Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions[J]. Electrochimica Acta, 2008, 53(16): 5195-5198. |
12 | LIU H C, LEE C H, SHIU Y H, et al. Performance simulation for an anode-supported SOFC using Star-CD code[J]. Journal of Power Sources, 2007, 167(2): 406-412. |
13 | YAKABE H, OGIWARA T, HISHINUMA M, et al. 3-D model calculation for planar SOFC[J]. Journal of Power Sources, 2001, 102(1/2): 144-154. |
14 | LIU Y, HASHIMOTO S I, TAKEI K, et al. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation[J]. Journal of Power Sources, 2007, 174(1): 95-102. |
15 | 李昂. 固体氧化物燃料电池堆的多物理场全耦合建模和理论模拟[D]. 合肥: 中国科学技术大学, 2016. |
LI A. Multiphysics fully coupled modelling for solid oxide fuel cell stack and theoretical simulation[D]. Hefei: University of Science and Technology of China, 2016. | |
16 | JIANG W, FANG R X, KHAN J A, et al. Parameter setting and analysis of a dynamic tubular SOFC model[J]. Journal of Power Sources, 2006, 162(1): 316-326. |
17 | KAKAC S, PRAMUANJAROENKIJ A, ZHOU X. A review of numerical modeling of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32(7): 761-786. |
18 | 李小连. 基于多物理场模拟的固体氧化物燃料电池气道结构优化[D]. 北京: 清华大学, 2018. |
LI X L. Optimization of interconnect structure of solid oxide fuel cell based on multi-physical modeling[D].Beijing: Tsinghua University, 2018. | |
19 | WEI S S, WANG T H, WU J S. Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode-supported solid oxide fuel cell stack[J]. Energy, 2014, 69: 553-561. |
20 | TODD B, YOUNG J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200. |
21 | Cussler E L. Diffusion: Mass transfer in fluid systems[J]. Chemical Engineering World, 2017, 52(3): 65-65. |
22 | RAJ A, SASMITO A P, SHAMIM T. Numerical investigation of the effect of operating parameters on a planar solid oxide fuel cell[J]. Energy Conversion and Management, 2015, 90: 138-145. |
23 | CUSSLER E L. Diffusion: Mass Transfer in Fluid Systems[M]. 2nd ed. New York: Cambridge University Press, 1997 |
24 | LI X L, SHI W Y, HAN M F. Optimization of interconnect flow channels width in a planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21524-21534. |
25 | ILBAS M, KUMUK B. Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model[J]. Journal of the Energy Institute, 2019, 92(3): 682-692. |
26 | NISHIDA R T, BEALE S B, PHAROAH J G. Comprehensive computational fluid dynamics model of solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20592-20605. |
27 | LIN Z J, STEVENSON J W, KHALEEL M A. The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs[J]. Journal of Power Sources, 2003, 117(1/2): 92-97. |
28 | LIN Z J, CHEN G, XIA W W, et al. Downlink sub-channel allocation algorithm for OFDMA-based multi-cell networks[C]//The 7th IEEE/International Conference on Advanced Infocomm Technology. Fuzhou, China. IEEE, 2014: 155-165. |
29 | LEE S, PARK M, KIM H, et al. Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations[J]. Energy, 2017, 120: 293-305. |
30 | ZHANG Z G, CHEN J F, YUE D T, et al. Three-dimensional CFD modeling of transport phenomena in a cross-flow anode-supported planar SOFC[J]. Energies, 2013, 7(1): 80-98. |
31 | LEE S, KIM H, YOON K J, et al. The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations[J]. International Journal of Heat and Mass Transfer, 2016, 97: 77-93. |
32 | 苗利娜. 中低温固体氧化物燃料电池双层电解质结构设计及相关电极材料开发[D]. 合肥: 中国科学技术大学, 2020. |
MIAO L N. Design of Bi-layer electrolyte and related electrode materials for low temperature solid oxide fuel cells[D]. Hefei: University of Science and Technology of China, 2020. | |
33 | TIMURKUTLUK B, CELIK S, TIMURKUTLUK C, et al. Novel electrolytes for solid oxide fuel cells with improved mechanical properties[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13499-13509. |
34 | JEON D H. A comprehensive CFD model of anode-supported solid oxide fuel cells[J]. Electrochimica Acta, 2009, 54(10): 2727-2736. |
35 | BARZI Y M, RAOUFI A, LARI H. Performance analysis of a SOFC button cell using a CFD model[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9468-9478. |
[1] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[2] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[3] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
[4] | Hangyu SUN, Zhuohua LI, Yali WANG, Xiaoyan LI, Yunfeng FU, Guoshan DU, Songxuan CHEN. Research progress of model simulation of direct internal reforming in solid oxide fuel cells [J]. Energy Storage Science and Technology, 2024, 13(4): 1277-1292. |
[5] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[6] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[7] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[8] | Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. |
[9] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[10] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[11] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[12] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[13] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[14] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[15] | Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant [J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||