Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 1030-1035.doi: 10.19799/j.cnki.2095-4239.2023.0736
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Heqing TIAN(), Yiming GAO, Junjie ZHOU()
Received:
2023-10-19
Revised:
2023-11-15
Online:
2024-03-28
Published:
2024-03-28
Contact:
Junjie ZHOU
E-mail:tianhq@zzu.edu.cn;zhoujj@zzu.edu.cn
CLC Number:
Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity[J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035.
Table 2
Specific heat capacity of molten salt and its nanofluids"
熔盐及其纳米流体 | 定压比热容/[J/(kg·K)] | |||
---|---|---|---|---|
520~760 K | >760 K | |||
52NaCl-48CaCl2 | -7×10-9T5+2×10-5T4-3×10-2T3+21.8T2-7256.2T+960250.1 | 1100 | ||
52NaCl-48CaCl2 (1%Mg) | 9×10-10T4-2×10-6T3+0.0021T2-0.8855T+138.42 | 1130 | ||
52NaCl-48CaCl2 (1%Mg) | 9×10-10T4-2×10-6T3+0.002T2-0.7819T+116.52 | 1190 |
1 | 程进辉. 传蓄热熔盐的热物性研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2014. |
CHENG J H. Study on molten salt thermophysical properties for heat transfer and storage[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2014. | |
2 | TIAN H Q, WANG W L, DING J, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 187-194. |
3 | QIAN T T, LI J H, MIN X, et al. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(16): 8526-8536. |
4 | ZHENG Y, ZHAO W H, SABOL J C, et al. Encapsulated phase change materials for energy storage-Characterization by calorimetry[J]. Solar Energy, 2013, 87: 117-126. |
5 | BABY R, BALAJI C. Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink[J]. International Communications in Heat and Mass Transfer, 2013, 46: 27-30. |
6 | 李昭, 李宝让, 崔柳, 等. 高温熔盐基纳米流体热物性的稳定性研究[J]. 储能科学与技术, 2020, 9(6): 1775-1783. |
LI Z, LI B R, CUI L, et al. Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783. | |
7 | CUI L, YU Q S, WEI G S, et al. Mechanisms for thermal conduction in molten salt-based nanofluid[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122648. |
8 | NARASIMHAN N L, VEERARAGHAVAN V, RAMANATHAN G, et al. Studies on the inward spherical solidification of a phase change material dispersed with macro particles[J]. Journal of Energy Storage, 2018, 15: 158-171. |
9 | VYSHAK N R, JILANI G. Numerical analysis of latent heat thermal energy storage system[J]. Energy Conversion and Management, 2007, 48(7): 2161-2168. |
10 | 张天福. 高温熔盐罐内熔化过程优化及控制研究[D]. 北京: 华北电力大学, 2021. |
ZHANG T F. Research on optimization and control of melting process in high temperature molten salt[D].Beijing: North China Electric Power University, 2021. | |
11 | 廖志荣, 李鑫, 徐超, 等. 太阳能热发电站中熔融盐冻堵管道的熔化过程[J]. 科学通报, 2017, 62(9): 960-966. |
LIAO Z R, LI X, XU C, et al. The melting process of a freezing molten salt pipe of concentracted solar power plant[J]. Chinese Science Bulletin, 2017, 62(9): 960-966. | |
12 | 王兴, 靳智平, 刘宏丽. 太阳能熔盐蓄热罐蓄热过程的性能研究[J]. 山西电力, 2015(2): 50-53. |
WANG X, JIN Z P, LIU H L. Study on thermal storage process of solar energy in molten salt thermal storage tank[J]. Shanxi Electric Power, 2015(2): 50-53. | |
13 | HUANG X P, SUN C, CHEN Z Q, et al. Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams[J]. International Journal of Thermal Sciences, 2021, 170: 107151. |
14 | XIAO X, ZHANG P, LI M. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage[J]. Energy Conversion and Management, 2015, 105: 272-284. |
[1] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[2] | Yibin LUO, Wenchao DUAN, Jinghao YAN, Jie LI, Xiaoqin SUN, Shuguang LIAO. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit [J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. |
[3] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[4] | Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. |
[5] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[6] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[7] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[8] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[9] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[10] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[11] | Heqing TIAN, Zhaoyang KOU, Junjie ZHOU, Yinsheng YU. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids [J]. Energy Storage Science and Technology, 2023, 12(3): 654-660. |
[12] | Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant [J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. |
[13] | Jixiang GE, Mingxi JI, Yulong DING, Yimo LUO, Liming WANG. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application [J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. |
[14] | Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field [J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626. |
[15] | Dianwei FU, Cancan ZHANG, Heya NA, Guoqiang WANG, Yuting WU, Yuanwei LU. Review of the molecular dynamics of molten salt thermal physical properties [J]. Energy Storage Science and Technology, 2023, 12(12): 3873-3882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||