1 |
刘康, 康龙云, 岳睿, 等. 基于门控循环单元编解码器的锂离子电池荷电状态估计[J]. 电网技术, 2024, 48(5): 2161-2169. DOI: 10.13335/j.1000-3673.pst.2023.0882
|
|
LIU K, KANG L Y, YUE R, et al. Lithium-ion battery state of charge estimation based on gated recurrent unit encoder-decoder[J]. Power System Technology, 2024, 48(5): 2161-2169. DOI: 10.13335/j.1000-3673.pst.2023.0882
|
2 |
PANG X Q, LIU X Y, JIA J F, et al. A lithium-ion battery remaining useful life prediction method based on the incremental capacity analysis and Gaussian process regression[J]. Microelectronics Reliability, 2021, 127: 114405. DOI:10.1016/j.microrel. 2021.114405.
|
3 |
DUAN B, ZHANG Q, GENG F, et al. Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter[J]. International Journal of Energy Research, 2020, 44(3): 1724-1734. DOI:10.1002/er.5002.
|
4 |
MA Y, CHEN Y, ZHOU X W, et al. Remaining useful life prediction of lithium-ion battery based on Gauss-Hermite particle filter[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1788-1795. DOI:10.1109/TCST.2018.2819965.
|
5 |
DONG H C, JIN X N, LOU Y B, et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources, 2014, 271: 114-123. DOI:10.1016/j.jpowsour. 2014.07.176.
|
6 |
HUANG C G, YIN X H, HUANG H Z, et al. An enhanced deep learning-based fusion prognostic method for RUL prediction[J]. IEEE Transactions on Reliability, 2020, 69(3): 1097-1109. DOI:10.1109/TR.2019.2948705.
|
7 |
LIU H, SONG W Q, NIU Y H, et al. A generalized cauchy method for remaining useful life prediction of wind turbine gearboxes[J]. Mechanical Systems and Signal Processing, 2021, 153: 107471. DOI:10.1016/j.ymssp.2020.107471.
|
8 |
SUN Y Q, HAO X L, PECHT M, et al. Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator[J]. Microelectronics Reliability, 2018, 88: 1189-1194. DOI:10.1016/j.microrel.2018.07.047.
|
9 |
WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173: 134-140. DOI:10.1016/j.apenergy.2016.04.057.
|
10 |
LI L L, LIU Z F, TSENG M L, et al. Enhancing the Lithium-ion battery life predictability using a hybrid method[J]. Applied Soft Computing, 2019, 74: 110-121. DOI:10.1016/j.asoc.2018.10.014.
|
11 |
WANG F K, MAMO T. A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries[J]. Journal of Power Sources, 2018, 401: 49-54. DOI:10.1016/j.jpowsour.2018.08.073.
|
12 |
王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534. DOI: 10.13334/j.0258-8013.pcsee.202368.
|
|
WANG P, FAN L F, CHENG Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534. DOI: 10.13334/j.0258-8013.pcsee. 202368.
|
13 |
刘志文. 基于变分模态分解的锂离子电池剩余使用寿命预测方法研究[D]. 重庆: 重庆大学, 2022. DOI: 10.27670/d.cnki.gcqdu. 2022.000122.
|
|
LIU Z W. Research on prediction method of remaining service life of lithium-ion battery based on variational modal decomposition[D]. Chongqing: Chongqing University, 2022. DOI: 10.27670/d.cnki.gcqdu.2022.000122.
|
14 |
向铭, 何怡刚, 张慧. 基于改进集成经验模态分解和高斯过程回归的锂离子电池剩余容量及寿命预测方法[J]. 电测与仪表, 2023, 60(9): 27-33. DOI: 10.19753/j.issn1001-1390.2023.09.005.
|
|
XIANG M, HE Y G, ZHANG H. Capacity and remaining useful life prediction of lithium-ion battery based on MEEMD and GPR[J]. Electrical Measurement & Instrumentation, 2023, 60(9): 27-33. DOI: 10.19753/j.issn1001-1390.2023.09.005.
|