Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (4): 1176-1187.doi: 10.19799/j.cnki.2095-4239.2024.0167
Previous Articles Next Articles
Ao KE1(), Rukun YANG1,2(), Xueke WU1
Received:
2024-03-11
Revised:
2024-03-21
Online:
2024-04-26
Published:
2024-04-22
Contact:
Rukun YANG
E-mail:keao@geesun.com;yangrukun@geesun.com
CLC Number:
Ao KE, Rukun YANG, Xueke WU. Intelligent winding technology of power batteries[J]. Energy Storage Science and Technology, 2024, 13(4): 1176-1187.
Table 1
Standard electrode size deviation and probability calculation"
根据正态分布计算 calculate based on normal distribution | 根据平均数计算 calculate based on mean | |||||
---|---|---|---|---|---|---|
正极厚度偏差/mm | 负极厚度偏差/mm | 概率 | 上隔膜厚度偏差/mm | 下隔膜厚度偏差/mm | 概率 | |
0.003 | 0.003 | 1.15% | 0.001 | 0.001 | 33.33% | |
0.002 | 0.002 | 7.85% | 0 | 0 | 33.33% | |
0.001 | 0.001 | 23.85% | -0.001 | -0.001 | 33.33% | |
0 | 0 | 34.30% | — | — | — | |
-0.001 | -0.001 | 23.85% | — | — | — | |
-0.002 | -0.002 | 7.85% | — | — | — | |
-0.003 | -0.003 | 1.15% | — | — | — |
Table 2
Simulation results of extreme of material line and diameter"
情况占比 | 极组总体厚度偏差/mm | 卷针直径变化量(最优)/mm | 正极耳错位量(绝对值)(ABS)/mm | 负极耳错位量(绝对值)(ABS)/mm | 可行性 (小于7 mm) | 合格率 | 可行性 (小于6 mm) | 合格率 |
---|---|---|---|---|---|---|---|---|
0.001% | 0.008 | -0.345 | 10.89 | 10.67 | 99.60% | 97.95% | ||
0.023% | 0.007 | -0.3 | 9.4 | 9.6 | ||||
0.174% | 0.006 | -0.258 | 8.11 | 8.12 | ||||
0.826% | 0.005 | -0.215 | 6.7 | 6.77 | √ | |||
2.729% | 0.004 | -0.175 | 5.61 | 5.35 | √ | √ | ||
6.627% | 0.003 | -0.13 | 4.06 | 3.93 | √ | √ | ||
12.230% | 0.002 | -0.085 | 2.64 | 2.86 | √ | √ | ||
17.525% | 0.001 | -0.044 | 1.35 | 1.35 | √ | √ | ||
19.732% | 0 | 0 | 0 | 0 | √ | √ | ||
17.525% | -0.001 | 0.044 | 1.35 | 1.35 | √ | √ | ||
12.230% | -0.002 | 0.085 | 2.64 | 2.86 | √ | √ | ||
6.627% | -0.003 | 0.13 | 4.06 | 3.93 | √ | √ | ||
2.729% | -0.004 | 0.175 | 5.61 | 5.35 | √ | √ | ||
0.826% | -0.005 | 0.215 | 6.7 | 6.77 | √ | |||
0.174% | -0.006 | 0.258 | 8.11 | 8.12 | ||||
0.023% | -0.007 | 0.3 | 9.4 | 9.6 | ||||
0.001% | -0.008 | 0.338 | 10.89 | 10.67 |
Table 3
Simulation results of cathode thickness and extreme of pole group"
情况占比 | 总体厚度偏差范围/mm | 正极厚度变化范围/mm | 正负极极耳错位边界范围/mm |
---|---|---|---|
0.13% | 0.005 | -0.0057~-0.0042 | (-6.84/-5.60)~(5.17/6.41) |
1.13% | 0.004 | -0.0047~-0.0032 | (-6.53/-5.60)~(5.47/6.41) |
4.78% | 0.003 | -0.0037~-0.0022 | (-6.38/-5.60)~(5.63/6.41) |
11.98% | 0.002 | -0.0028~-0.0012 | (-6.87/-6.41)~(5.78/6.41) |
20.09% | 0.001 | -0.0018~-0.0002 | (-6.71/-6.41)~(6.10/6.41) |
23.78% | 0 | -0.0008~0.0008 | (-6.41/-6.41)~(6.16/6.41) |
20.09% | -0.001 | 0.0008~0.0018 | (-6.10/-6.41)~(6.71/6.41) |
11.98% | -0.002 | 0.0012~0.0027 | (-5.79/-6.41)~(6.22/5.60) |
4.78% | -0.003 | 0.0022~0.0037 | (-5.63/-6.41)~(6.38/5.60) |
1.13% | -0.004 | 0.0032~0.0047 | (-5.48/-6.41)~(6.53/5.60) |
0.13% | -0.005 | 0.0042~0.0057 | (-5.17/-6.41)~(6.84/5.60) |
Table 4
Simulation results of diameter,knurling and extreme of pole group"
整体偏差值(除正极外) deviation (except for anode) | 正极偏差值 anode deviation | 极耳偏移量(+/-) tab misalignment | 卷针直径调节(最优) diameter change | 调节后极耳偏差值(+/-) adjusted tab misalignment |
---|---|---|---|---|
0.006 | -0.0042 | 14.42/12.85 | -0.076 | 2.95/-2.88 |
0.007 | -0.0042 | 22.43/20.86 | -0.114 | 4.52/-4.12 |
0.008 | -0.0042 | 30.44/28.56 | -0.158 | 5.62/-5.71 |
0.009 | -0.0042 | 38.45/36.25 | -0.199 | 7.19/-7.09 |
-0.006 | 0.0038 | -17.62/-16.05 | 0.09 | -3.49/3.41 |
-0.007 | 0.0038 | -25.64/-24.06 | 0.133 | -4.74/4.80 |
-0.008 | 0.0038 | -33.65/-31.76 | 0.175 | -6.15/-6.25 |
-0.009 | 0.0038 | -41.66/-39.46 | 0.216 | -7.73/7.63 |
1 | 张红梅, 明五一, 彭碧, 等. 全自动锂离子动力电池卷绕机关键技术研究[J]. 机电工程技术, 2016, 45(5): 25-29. |
ZHANG H M, MING W Y, PENG B, et al. Research on the key technology of the automatic winding machine for lithium power battery[J]. Mechanical & Electrical Engineering Technology, 2016, 45(5): 25-29. | |
2 | 韦磊, 刘冯新. 极耳模切参数获得方法、多极耳电芯及卷绕方法、电池: CN116053556A[P]. 2023-05-02. |
WEI L, LIU F. Tab die cutting parameter obtaining method, multi-tab battery cell, winding method and battery: CN116053556A[P]. 2023-05-02. | |
3 | 张国帅, 朱金保, 于哲勋. 一种快速确定极耳间距尺寸的方法, 装置及电池生产系统: CN202211137991.9[P].2024-03-18. |
ZHANG G S, ZHU J B, YU Z X. A method, device, and battery production system for quickly determining the distance between poles and ears: CN202211137991.9 [P]. 2024-03-18. | |
4 | 花宇, 施凯霞. 方形电池卷芯极耳间距算法研究 [J/OL]. 电池工业, 2024. [2024-03-01].http://kns.cnki.net/kcms/detail/32.1448.TM.20240227.1814.002.html. |
HUA Y, SHI K X. Research on the algorithm for calculating the distance between the core and ear of square battery coils [J/OL] Battery Industry, 2024. [2024-03-01].http://kns.cnki.net/kcms/detail/32.1448.TM.20240227.1814.002.html. | |
5 | 阳如坤, 柯奥. 动力电池的智能制造[J]. 电池工业, 2023, 27(4): 163-169. |
YANG R K, KE A. Intelligent manufacturing of power battery[J]. Chinese Battery Industry, 2023, 27(4): 163-169. |
[1] | Jia LIU, Zhiqiang MA, Guangchen LIU, Jundong GAO, Hongxun LI. Predicting the residual useful life of power batteries based on the GRUU-TCN ensemble under multiscale decomposition [J]. Energy Storage Science and Technology, 2024, 13(3): 1009-1018. |
[2] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[3] | Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. |
[4] | Huiqun YU, Zhehao HU, Daogang PENG, Haoyi SUN. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685. |
[5] | Yunjie LI, Guangyu ZHANG, Weiwen ZHU, Yuanyuan MIN, Chengfei RAO, Yanfei SUN, Qingqing XU. The dynamic simulation of pressure relief characteristics of the power battery vent based on choking flow [J]. Energy Storage Science and Technology, 2023, 12(3): 960-967. |
[6] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
[7] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[8] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[9] | Xiaoyuan ZHANG, Jinhao ZHANG, Yajun JIANG. Power battery health evaluation based on improved TCN model [J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. |
[10] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[11] | Jianguang YIN, Xiangyu CUI, Fangwei LI, Yuwei ZANG, Fei PENG. Research on the parameter identification of battery performance degradation based on self-adaptive synergistic guiding [J]. Energy Storage Science and Technology, 2022, 11(10): 3345-3353. |
[12] | Jian HU, Chunjing LIN, Weijian HAO, Tianlei ZHENG. Current status and suggestions for the construction of power battery standard system [J]. Energy Storage Science and Technology, 2022, 11(1): 313-320. |
[13] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
[14] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[15] | Lei GAO, Yufeng MENG, Qibin YAN, Hui YANG. The influence of copper foil appearance quality on Li-ion power battery performance [J]. Energy Storage Science and Technology, 2020, 9(S1): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||